

Reference

Design

SLVSAU2C-MAY 2011-REVISED DECEMBER 2015

Support &

Community

20

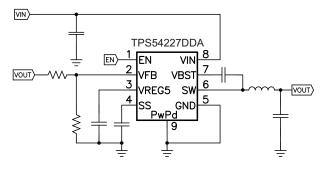
TPS54227 4.5-V to 18-V Input, 2-A Synchronous Step-Down Converter

Technical

Documents

Sample &

Buy


1 Features

- D-CAP2[™] Mode Enables Fast Transient Response
- Low Output Ripple and Allows Ceramic Output Capacitor
- Wide V_{IN} Input Voltage Range: 4.5 V to 18 V
- Output Voltage Range: 0.76 V to 7 V
- Highly-Efficient Integrated FETs Optimized for Lower Duty Cycle Applications
 - 155 m Ω (High-Side) and 108 m Ω (Low-Side)
- High Efficiency, Less Than 10 µA at Shutdown
- High Initial Bandgap Reference Accuracy
- Adjustable Soft-Start
- **Prebiased Soft-Start**
- 700-kHz Switching Frequency (f_{SW})
- Cycle-By-Cycle Overcurrent Limit

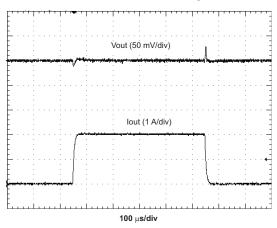
Applications 2

- Wide Range of Applications for Low-Voltage System
 - **Digital TV Power Supply** _
 - High-Definition Blu-ray Disc[™] Players
 - **Networking Home Terminals**
 - Digital Set Top Boxes (STB)

Simplified Schematic

3 Description

Tools &


Software

The TPS54227 device is an adaptive ON-time D-CAP2 mode synchronous buck converter. The TPS54227 enables system designers to complete the bus regulators for a suite of various end equipment with a cost-effective, low component count, low standby current solution. The main control loop for the TPS54227 uses the D-CAP2 mode control which provides a fast transient response with no external compensation components. The TPS54227 also has a proprietary circuit that enables the device to adopt to both low equivalent series resistance (ESR) output capacitors, such as POSCAP or SP-CAP, and ultralow ESR ceramic capacitors. The device operates from 4.5-V to 18-V VIN input. The output voltage can be programmed between 0.76 V and 7 V. The device also features an adjustable soft-start time. The TPS54227 is available in the 8-pin HSOP package and 10-pin VSON, and is designed to operate from -40°C to 85°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)	
TPS54227	SO PowerPAD (8)	4.89 mm × 3.90 mm	
1P304227	VSON (10)	3.00 mm × 3.00 mm	

(1) For all available packages, see the orderable addendum at the end of the data sheet.

TPS54227 Transient Response

Page

Page

STRUMENTS

XAS

Table of Contents

1	Feat	tures 1
2	Арр	lications 1
3	Des	cription1
4	Rev	ision History 2
5	Pin	Configuration and Functions 3
6	Spe	cifications
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 5
	6.5	Electrical Characteristics 5
	6.6	Typical Characteristics 6
7	Deta	ailed Description 8
	7.1	Overview
	7.2	Functional Block Diagram 8
	7.3	Feature Description

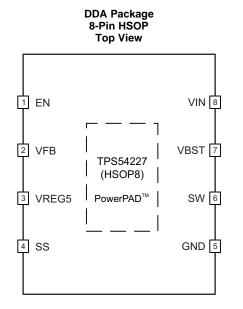
	7.4	Device Functional Modes 10
8	App	lication and Implementation 11
	8.1	Application Information 11
	8.2	Typical Application 11
9	Pow	er Supply Recommendations 15
10	Lay	out 15
		Layout Guidelines 15
	10.2	Layout Examples 15
	10.3	Thermal Considerations 16
11	Dev	ice and Documentation Support 17
	11.1	Documentation Support 17
	11.2	Community Resources 17
	11.3	Trademarks 17
	11.4	Electrostatic Discharge Caution 17
	11.5	Glossary 17
12		hanical, Packaging, and Orderable mation

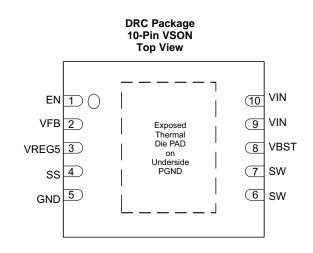
4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (June 2013) to Revision C

•	Deleted Ordering Information table	1
•	Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device	
	and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	1


Changes from Revision A (October 2011) to Revision B


•	Removed (SWIFT™) from the data sheet title	. 1
•	Added "and 10-pin DRC" to the DESCRIPTION	. 1
•	Added the DRC-10 Pin package pin out	. 3
•	Changed the VBST(vs SW) MAX value From: 5.7V to 6V in the ROC table	. 4
•	Added High-side switch resistance (DRC)	. 5
•	Added a conditions statement "VIN = 12 V, T _A = 25°C" to the TYPICAL CHARACTERISTICS	. 6
•	Changed Figure 11 title From: 1.05-V, 50-mA to 2-A LOAD TRANSIENT RESPONSE To: 1.05-V, 0-A to 2-A LOAD	
	TRANSIENT RESPONSE	13
•	Added Figure 18	16

Changes from Original (May 2010) to Revision A		
•	Corrected the pin numbers for Pins 5 through 8	3
•	Added R _{EN} - EN pin resistance to GND to the LOGIC THRESHOLD section of the ELECTRICAL CHARACTERISTICS table	5

5 Pin Configuration and Functions

Pin Functions

	PIN		I/O	DECODIDION		
NAME DDA DRC		1/0	DESCRIPTION			
EN	1	1	I	inable input control. EN is active high and must be pulled up to enable the device.		
Exposed Thermal	—		G	Thermal pad of the package. Must be soldered to achieve appropriate dissipation. Must be connected to GND.		
Pad		—	G	Thermal pad of the package. PGND power ground return of internal low-side FET. Must be soldered to achieve appropriate dissipation.		
GND	5	5	G	Ground pin. Power ground return for switching circuit. Connect sensitive SS and VFB returns to GND at a single point.		
SS	4	4	0	Soft-start control. An external capacitor should be connected to GND.		
SW	6	6, 7	0	Switch node connection between high-side NFET and low-side NFET.		
VBST	7	8	I	Supply input for the high-side FET gate drive circuit. Connect $0.1-\mu$ F capacitor between VBST and SW pins. An internal diode is connected between VREG5 and VBST.		
VFB	2	2	I	Converter feedback input. Connect to output voltage with feedback resistor divider.		
VIN	8	9, 10	Р	Input voltage supply pin.		
VREG5	REG5 3 3 O 5.5-V power supply output. A capacitor (typical 1 µF) should be connected to GN VREG5 is not active when EN is low.		5.5-V power supply output. A capacitor (typical 1 $\mu F)$ should be connected to GND. VREG5 is not active when EN is low.			

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
	VIN, EN	-0.3	20	V
	VBST	-0.3	26	V
	VBST (10-ns transient)	-0.3	28	V
Input voltage	VBST (vs SW)	-0.3	6.5	V
	VFB, SS	-0.3	6.5	V
	SW	-2	20	V
	SW (10-ns transient)	-3	22	V
	VREG5	-0.3	6.5	V
Dutput voltage oltage from GND to therm operating junction temperat	GND	-0.3	0.3	V
Voltage from GND to th	nermal pad, V _{diff}	-0.2	0.2	V
Operating junction temp	perature, T _J	-40	150	°C
Storage temperature, T	oltage GND from GND to thermal pad, V _{diff} g junction temperature, T _J		150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT
V		Electroptotic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
V (I	ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{IN}	Supply input voltage range		4.5	18	V
		VBST	-0.1	24	
		VBST (10 ns transient)	-0.1	27	
		VBST(vs SW)	-0.1	6	
		SS	-0.1	5.7	
VI	Input voltage range	EN	-0.1	18	V
		VFB	-0.1	5.5	
		SW	-1.8	18	
		SW (10 ns transient)	-3	21	
		GND	-0.1	0.1	
Vo	Output voltage range	VREG5	-0.1	5.7	V
I _O	Output Current range	I _{VREG5}	0	10	mA
T _A	Operating free-air temperature		-40	85	°C
TJ	Operating junction temperature		-40	150	°C

6.4 Thermal Information

	Junction-to-board thermal resistance16.218.9°C/WJunction-to-top characterization parameter6.60.7°C/WJunction-to-board characterization parameter1619.1°C/W			
R _{θJA} Junction-to-ambient thermal resistance R _{θJC(top)} Junction-to-case (top) thermal resistance R _{θJB} Junction-to-board thermal resistance ψ _{JT} Junction-to-top characterization parameter ψ _{JB} Junction-to-board characterization parameter	THERMAL METRIC ⁽¹⁾	DDA (HSOP)	DRC (VSON)	UNIT
		8 PINS	10 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	45.3	43.9	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	54.8	55.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	16.2	18.9	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	6.6	0.7	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	16	19.1	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	8.5	5.3	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

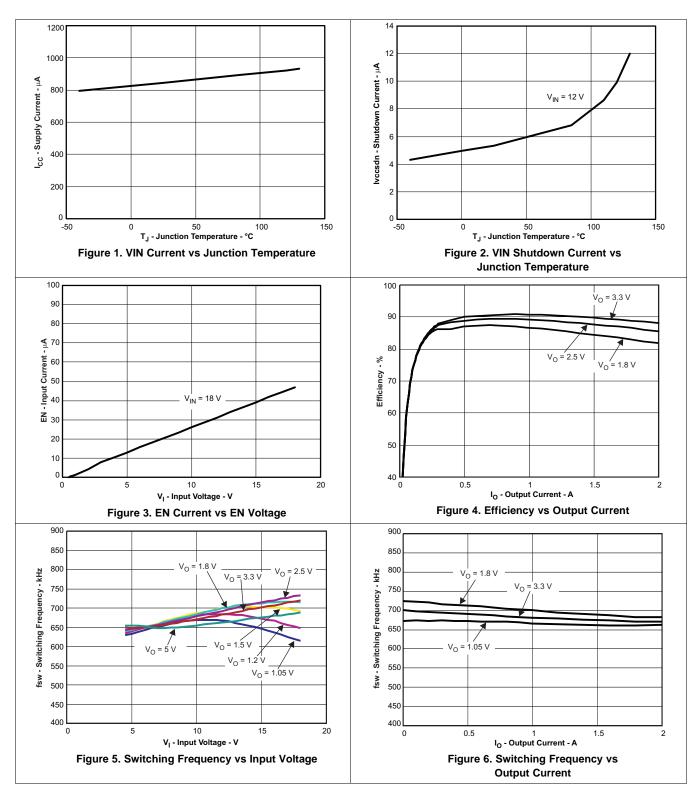
6.5 Electrical Characteristics

over operating free-air temperature range, V_{IN} = 12 V (unless otherwise noted)

$ \begin{array}{c c c c c c } \hline Shutdown supply current & V_{N} current, T_A = 25^\circ C, EN = 0 \ V & 5 & 10 \ \mu A \\ \hline titesembed linescence control control$		PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Version Shutdown supply current V _R , current, T _A = 25°C, EN = 0 V 5 10 μA LOGIC THRESHOLD VErsit EN high-level input voltage EN 1.6 V Versit EN high-level input voltage EN 0.6 V 0.6 V V Versit EN low-level input voltage EN 0.6 V V 220 440 880 kQ Versit EN pin resistance to GND Versit 12 V 220 440 880 kQ Versit Vrsit threshold voltage T _A = 25°C, V _O = 1.05 V, continuous mode 749 765 781 mV Versit Vrsit threshold voltage T _A = 25°C, 6 V < V _{IN} < 18 V, 0 < I _{VREOS} < 5 mA 5.2 5.5 5.7 V Viseo Output current V _{IN} = 6 V, N < 18 V, 0 < I _{VREOS} < 5 mA 5.2 5.5 5.7 V Viseo Output current V _{IN} = 6 V, N < 180, 0 < I _{VREOS} < 5 mA 5.2 5.5 5.7 V Viseo Output current V _{IN} = 25°C, 0 V < 1818 V, 0 < I _{VREOS} < 5 mA 5.2 <th>SUPPLY C</th> <th>JRRENT</th> <th></th> <th></th> <th></th> <th></th> <th>-</th>	SUPPLY C	JRRENT					-
$\begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c } \hline \bellelee{tabular} \hline \hline \bellee{tabular} \hline \$	I _{VIN}	Operating - non-switching supply current	V_{IN} current, $T_A = 25^{\circ}C$, EN = 5 V, $V_{FB} = 0.8$ V		800	1200	μA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IVINSDN	Shutdown supply current	V_{IN} current, $T_A = 25^{\circ}C$, $EN = 0 V$		5	10	μA
Websile EN low-level input voltage EN	LOGIC THE	RESHOLD					
$\begin{array}{c c c c c c } \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c c } \hline \hline \begin{tabular}{ c c c } \hline \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c }$	V _{ENH}	EN high-level input voltage	EN	1.6			V
We Not TAGE AND DISCHARGE RESISTANCE TA = 25°C, V_0 = 1.05 V, continuous mode 749 765 781 mV VFBTH VFB threshold voltage TA = 25°C, V_0 = 1.05 V, continuous mode 749 765 781 mV VFB VFB input current VFB = 0.8 V, TA = 25°C 0 ±0.1 μA Varead OUTPUT Vices OUTPUT Vices Output voltage TA = 25°C, 6 V < V_IN < 18 V, 0 < V_{VREGS} < 5 mA	V _{ENL}	EN low-level input voltage	EN			0.6	V
$\begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c } \hline & T_A = 25^\circ C, \ V_O = 1.05 \ V, \ continuous mode & 749 & 765 & 781 & mV \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	R _{EN}	EN pin resistance to GND	V _{EN} = 12 V	220	440	880	kΩ
$ \begin{array}{c c c c c c c } V_{FB} & V_{FB} & Input current & V_{FB} & 0.8 \ V, T_A & 25^\circ C & 0 & \pm 0.1 & \mu A \\ \hline V_{REGS} & V_{REGS} & Output voltage & T_A & 25^\circ C, & 0 & < V_{IN} < 18 \ V, & 0 & < I_{VREGS} < 5 \ mA & 5.2 & 5.5 & 5.7 & V \\ \hline V_{LNS} & Line regulation & 6 \ V & < V_{IN} < 18 \ V, & I_{VREGS} & 5 \ mA & 2.5 & mV \\ \hline V_{LDS} & Load regulation & 0 \ mA & I_{VREGS} & 5 \ mA & 0 \ mV \\ \hline V_{LDS} & Load regulation & 0 \ mA & I_{VREGS} & 5 \ mA & 0 \ mV \\ \hline V_{LDS} & Load regulation & 0 \ mA & I_{VREGS} & 5 \ mA & 0 \ mV \\ \hline V_{LDS} & Load regulation & 0 \ mA & I_{VREGS} & 5 \ mA & 0 \ mV \\ \hline V_{LDS} & Load regulation & 0 \ mA & I_{VREGS} & 5 \ mA & 0 \ mV \\ \hline V_{LDS} & Output current & V_{IN} & 6 \ V, \ V_{REGS} & 4 \ V, \ T_A & 25^\circ C & 60 & mA \\ \hline MOSFET & & & & & & & & & & & & & & & & & & &$	V _{FB} VOLTA	GE AND DISCHARGE RESISTANCE					
$\begin{tabular}{ c c c c } \hline T_{N} & T_{N} &$	V _{FBTH}	V _{FB} threshold voltage	$T_A = 25^{\circ}C$, $V_O = 1.05$ V, continuous mode	749	765	781	mV
$\begin{array}{c c c c c c } V_{\text{REGS}} & V_{\text{REGS}} \text{ output voltage} & T_{\text{A}} = 25^{\circ}\text{C}, 6 \lor \forall v_{\text{IN}} < 18 \lor, 0 < I_{\text{VREGS}} < 5 \text{ mA} & 5.2 & 5.5 & 5.7 & V \\ V_{\text{LNS}} & \text{Line regulation} & 6 \lor \lor v_{\text{IN}} < 18 \lor, V_{\text{VREGS}} = 5 \text{ mA} & 25 & \text{mV} \\ V_{\text{LDS}} & \text{Load regulation} & 0 & \text{mA} < I_{\text{VREGS}} < 5 \text{ mA} & 100 & \text{mV} \\ V_{\text{VREGS}} & \text{Output current} & V_{\text{IN}} = 6 \lor, V_{\text{REGS}} = 4 \lor, T_{\text{A}} = 25^{\circ}\text{C} & 60 & \text{mA} \\ \hline \textbf{MOSFET} & & & & & & & & & & & & & & & & & & &$	I_{VFB}	V _{FB} input current	$V_{FB} = 0.8 V, T_A = 25^{\circ}C$		0	±0.1	μA
$\begin{split} & \begin{array}{c} V_{\rm LNS} & \mbox{Line regulation} & 6 \mbox{V} < V_{\rm IN} < 18 \mbox{V}, \mbox{I}_{\rm VREGS} = 5 \mbox{mA} & \mbox{low of mV} \\ V_{\rm LDS} & \mbox{Load regulation} & 0 \mbox{mA} < \mbox{I}_{\rm VREGS} < 5 \mbox{mA} & \mbox{mO} & \mbox{mV} \\ \hline V_{\rm LDS} & \mbox{Output current} & V_{\rm IN} = 6 \mbox{V}, \mbox{V}_{\rm REGS} = 4 \mbox{V}, \mbox{T}_{\rm A} = 25^{\circ}{\rm C} & 60 & \mbox{mA} \\ \hline \mbox{MOSFET} & & & & & & & & & & & & & & & & & & &$	V _{REG5} OUT	PUT					
$\begin{tabular}{ c c c c c } \hline V_{DS} & Load regulation & 0 & mA < I_{VREGS} < 5 & mA & 100 & mV \\ \hline V_{DS} & Output current & V_{IN} = 6 & V, & V_{REGS} < 5 & mA & 100 & mV \\ \hline V_{IN} = 6 & V, & V_{REGS} < 4 & V, & T_A = 25^{\circ}C & 60 & mA \\ \hline MOSFET & & & & & & & & & & & & & & & & & & &$	V _{VREG5}	V _{REG5} output voltage	$T_A = 25^{\circ}C, 6 \text{ V} < V_{IN} < 18 \text{ V}, 0 < I_{VREG5} < 5 \text{ mA}$	5.2	5.5	5.7	V
$ \begin{array}{c c c c c c } \hline \mbox{V}_{N} = 6 \ V, \ V_{REG5} = 4 \ V, \ T_A = 25^\circ \ C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	V_{LN5}	Line regulation	$6 \text{ V} < \text{V}_{\text{IN}} < 18 \text{ V}, \text{ I}_{\text{VREG5}} = 5 \text{ mA}$			25	mV
	V_{LD5}	Load regulation	0 mA < I _{VREG5} < 5 mA			100	mV
$ \begin{array}{c c c c c c } \hline High-side switch resistance (DDA) & 25^{\circ}\text{C}, \ V_{BST} - \text{SW} = 5.5 \ V & 165 & \text{m} \Omega \\ \hline & 165 & \text{m} \Omega \\ \hline & 165 & \text{m} \Omega \\ \hline & & 165 & \text{m} \Omega \\ \hline & & 165 & \text{m} \Omega \\ \hline & & & & & & & & & & & & & & \\ \hline & & & &$	I _{VREG5}	Output current	$V_{IN} = 6 V, V_{REG5} = 4 V, T_A = 25^{\circ}C$		60		mA
$\begin{tabular}{ c c c c c c } \hline Product Pro$	MOSFET						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	D	High-side switch resistance (DDA)			155		
$\begin{tabular}{ c c c c } \hline CURRENT LIMIT \\ \hline CURRENT LIMIT \\ \hline Current limit & L out = 2.2 \ \mu H^{(1)} & 2.5 & 3.3 & 4.7 & A \\ \hline THERMAL SHUTDOWN \\ \hline T_{SDN} & Thermal shutdown threshold & Shutdown temperature (1) & 165 & cC \\ \hline Hysteresis (1) & 35 & & & & & \\ \hline Hysteresis (1) & 35 & & & & & \\ \hline ON-TIME TIMER CONTROL \\ \hline t_{ON} & ON-time & V_{IN} = 12 \ V, \ V_{O} = 1.05 \ V & 150 & ns \\ \hline t_{OFF(MIN)} & Minimum OFF-time & T_A = 25^{\circ}C, \ V_{FB} = 0.7 \ V & 260 & 310 & ns \\ \hline SOFT-START & & & & \\ \hline I_{SSC} & SS charge current & V_{SS} = 1V & 1.4 & 2 & 2.6 & \mu A \\ \hline I_{SSD} & SS discharge current & V_{SS} = 0.5 \ V & & & & & & \\ \hline UVLO & UVLO threshold & & & & & \\ \hline Wake up \ V_{REGS} \ voltage & & & & & & & \\ \hline Wake up \ V_{REGS} \ voltage & & & & & & & \\ \hline V & V \ V \ V \ VULO \ VVLO threshold & & & & & \\ \hline \end{tabular}$	RDS(on)h	High-side switch resistance (DRC)	$25 \text{ C}, \text{ v}_{\text{BST}} - 5 \text{ v} = 5.5 \text{ v}$		165		11112
$ I_{ocl} Current limit \qquad L out = 2.2 \ \mu H^{(1)} \qquad 2.5 3.3 4.7 A \\ \hline THERMAL SHUTDOWN \\ T_{SDN} Thermal shutdown threshold \qquad Shutdown temperature (1) & 165 & c^{C} \\ \hline Hysteresis (1) & 35 & c^{C} \\ \hline ON-TIME TIMER CONTROL \\ t_{ON} ON-time \qquad V_{IN} = 12 \ V, \ V_{O} = 1.05 \ V & 150 & ns \\ t_{OFF(MIN)} Minimum OFF-time & T_{A} = 25^{\circ}C, \ V_{FB} = 0.7 \ V & 260 & 310 & ns \\ \hline SOFT-START \\ I_{SSC} SS \ charge \ current \qquad V_{SS} = 1 \ V & V_{SS} = 0.7 \ V & 0.1 & 0.2 & mA \\ I_{SSD} SS \ discharge \ current & V_{SS} = 0.5 \ V & 0.1 & 0.2 & mA \\ \hline UVLO \qquad UVLO \ UVLO \ threshold \qquad \hline Wake \ up \ V_{REGS} \ voltage & 3.45 3.75 4.05 \\ \hline V \ V \ V \ V \ V \ V \ V \ V \ V \ V$	R _{DS(on)I}	Low-side switch resistance	25°C		108		mΩ
THERMAL SHUTDOWN Thermal shutdown threshold Shutdown temperature (1) 165 °C T_SDN Thermal shutdown threshold 165 °C ON-TIME R CONTROL top N ON-time VIN = 12 V, Vo = 1.05 V 150 ns CO ON-time V VIN = 12 V, Vo = 1.05 V 150 ns topFF(MIN) Minimum OFF-time T = 25°C, VFB = 0.7 V 260 310 ns SOFT-START Issc SS charge current V_SS = 1V 1.4 2 2.6 µA UVLO UVLO threshold Wake up V _{REGS} voltage 3.45 3.75 4.05 V	CURRENT	LIMIT					
$\begin{array}{c c c c c c c } T_{SDN} & \hline \mbox{Thermal shutdown threshold} & \hline \mbox{Shutdown temperature} \ \mbox{(1)} & 165 & 1$	I _{ocl}	Current limit	L out = 2.2 μ H ⁽¹⁾	2.5	3.3	4.7	А
Thermal shutdown threshold°CHysteresis (1)35°CON-TIME R CONTROL t_{ON} ON-time $V_{IN} = 12 V, V_O = 1.05 V$ 150ns $t_{OFF(MIN)}$ Minimum OFF-time $T_A = 25^{\circ}C, V_{FB} = 0.7 V$ 260310nsSOFT-STARTUSSCSS charge currentV_SS = 1V1.422.6µAIlsscSS discharge currentV_SS = 0.5 V0.10.2mAUVLOUVLO thresholdWake up V_{REG5} voltage3.453.754.05V	THERMAL	SHUTDOWN					
Both Hysteresis (1) 35 ON-TIME R CONTROL t_{ON} ON-time $V_{IN} = 12 V, V_O = 1.05 V$ 150 ns $t_{OFF(MIN)}$ Minimum OFF-time $T_A = 25^{\circ}$ C, $V_{FB} = 0.7 V$ 260 310 ns SOFT-START I_{SSC} SS charge current $V_{SS} = 1V$ 1.4 2 2.6 μA I_{SSD} SS discharge current $V_{SS} = 0.5 V$ 0.1 0.2 mA UVLO UVLO UVLO threshold Wake up V_{REG5} voltage 3.45 3.75 4.05 V	т	Thermal shutdown threshold	Shutdown temperature ⁽¹⁾		165		°C
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	SDN		Hysteresis ⁽¹⁾		35		
Minimum OFF-time T _A = 25°C, V _{FB} = 0.7 V 260 310 ns SOFT-START Ilssc SS charge current V _{SS} = 1V 1.4 2 2.6 μ A Ilssc SS discharge current V _{SS} = 0.5 V 0.1 0.2 mA UVLO UVLO threshold Wake up V _{REG5} voltage 3.45 3.75 4.05 V	ON-TIME T	IMER CONTROL					
SOFT-START Soft-START V _{SS} = 1V 1.4 2 2.6 μ A Ilssc SS charge current V _{SS} = 1V 0.1 0.2 mA UVLO UVLO threshold Wake up V _{REG5} voltage 3.45 3.75 4.05 V	t _{ON}	ON-time	$V_{IN} = 12 \text{ V}, V_O = 1.05 \text{ V}$		150		ns
I_{SSC} SS charge current $V_{SS} = 1V$ 1.422.6 μA I_{SSD} SS discharge current $V_{SS} = 0.5 V$ 0.10.2mAUVLOUVLO thresholdWake up V_{REGS} voltage3.453.754.05V	t _{OFF(MIN)}	Minimum OFF-time	$T_A = 25^{\circ}C, V_{FB} = 0.7 V$		260	310	ns
UNCO UVLO UVLO threshold Wake up V _{REG5} voltage 3.45 3.75 4.05 V	SOFT-STAI	RT					
UVLO UVLO threshold Wake up V _{REG5} voltage 3.45 3.75 4.05 V	I _{SSC}	SS charge current	V _{SS} = 1V	1.4	2	2.6	μA
UVLO UVLO threshold Wake up V _{REG5} voltage 3.45 3.75 4.05 V	I _{SSD}	SS discharge current	V _{SS} = 0.5 V	0.1	0.2		mA
UVLO UVLO threshold V	UVLO						
		LIVI O threshold	Wake up V_{REG5} voltage	3.45	3.75	4.05	V
	010		Hysteresis V _{REG5} voltage	0.13	0.32	0.48	v

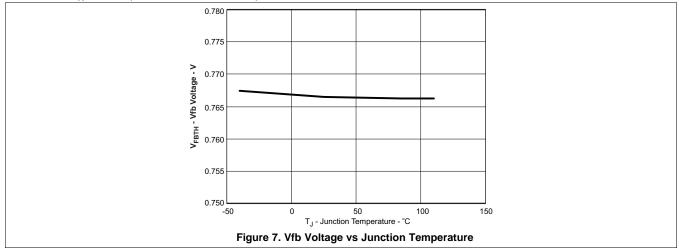
(1) Not production tested.

TPS54227


SLVSAU2C-MAY 2011-REVISED DECEMBER 2015

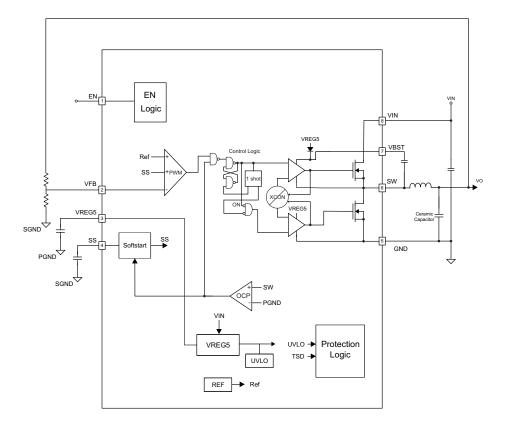
TEXAS INSTRUMENTS

www.ti.com


6.6 Typical Characteristics

VIN = 12 V, $T_A = 25^{\circ}C$ (unless otherwise noted)

Typical Characteristics (continued)



7 Detailed Description

7.1 Overview

The TPS54227 is a 2-A synchronous step-down (buck) converter with two integrated N-channel MOSFETs. It operates using D-CAP2 mode control. The fast transient response of D-CAP2 control reduces the output capacitance required to meet a specific level of performance. Proprietary internal circuitry allows the use of low ESR output capacitors including ceramic and special polymer types.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 PWM Operation

The main control loop of the TPS54227 is an adaptive ON-time pulse width modulation (PWM) controller that supports a proprietary D-CAP2 mode control. D-CAP2 mode control combines constant ON-time control with an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with both low ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output.

At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one shot timer expires. This one shot is set by the converter input voltage, VIN, and the output voltage, VO, to maintain a pseudo-fixed frequency over the input voltage range, hence it is called adaptive ON-time control. The one-shot timer is reset and the high-side MOSFET is turned on again when the feedback voltage falls below the reference voltage. An internal ramp is added to reference voltage to simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP2 mode control.

Feature Description (continued)

7.3.2 PWM Frequency and Adaptive ON-Time Control

TPS54227 uses an adaptive ON-time control scheme and does not have a dedicated on board oscillator. The TPS54227 runs with a pseudo-constant frequency of 700 kHz by using the input voltage and output voltage to set the ON-time one-shot timer. The ON-time is inversely proportional to the input voltage and proportional to the output voltage, therefore, when the duty ratio is VOUT / VIN, the frequency is constant.

7.3.3 Soft-Start and Prebiasd Soft-Start

The soft-start function is adjustable. When the EN pin becomes high, $2-\mu A$ current begins charging the capacitor which is connected from the SS pin to GND. Smooth control of the output voltage is maintained during start-up. The equation for the slow start time is shown in Equation 1. VFB voltage is 0.765 V and SS pin source current is $2 \mu A$.

$$t_{SS}(ms) = \frac{C6(nF) \times V_{REF} \times 1.1}{I_{SS}(\mu A)} = \frac{C6(nF) \times 0.765 \times 1.1}{2}$$
(1)

The TPS54227 contains a unique circuit to prevent current from being pulled from the output during start-up if the output is prebiased. When the soft-start commands a voltage higher than the prebias level (internal soft-start becomes greater than feedback voltage V_{FB}), the controller slowly activates synchronous rectification by starting the first low-side FET gate driver pulses with a narrow ON-time. It then increments that ON-time on a cycle-by-cycle basis until it coincides with the time dictated by (1-D), where D is the duty cycle of the converter. This scheme prevents the initial sinking of the prebias output, and ensure that the out voltage (VO) starts and ramps up smoothly into regulation and the control loop is given time to transition from prebiased start-up to normal mode operation.

7.3.4 Current Protection

The output overcurrent protection (OCP) is implemented using a cycle-by-cycle valley detect control circuit. The switch current is monitored by measuring the low-side FET switch voltage between the SW pin and GND. This voltage is proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated.

During the ON-time of the high-side FET switch, the switch current increases at a linear rate determined by VIN, VOUT, the ON-time and the output inductor value. During the ON-time of the low-side FET switch, this current decreases linearly. The average value of the switch current is the load current I_{OUT} . The TPS54227 constantly monitors the low-side FET switch voltage, which is proportional to the switch current, during the low-side ON-time. If the measured voltage is above the voltage proportional to the current limit, an internal counter is below the voltage corresponding to the current limit at which time the switching cycle is terminated and a new switching cycle begins. In subsequent switching cycles, the ON-time is set to a fixed value and the current is monitored in the same manner. If the overcurrent condition exists for 7 consecutive switching cycle occurs where the switch current is not above the lower OCL threshold, the counter is reset and the OCL limit is returned to the higher value.

There are some important considerations for this type of overcurrent protection. The load current one half of the peak-to-peak inductor current higher than the overcurrent threshold. Also when the current is being limited, the output voltage tends to fall as the demanded load current may be higher than the current available from the converter. This may cause the output voltage to fall. When the overcurrent condition is removed, the output voltage returns to the regulated value. This protection is non-latching.

7.3.5 UVLO Protection

Undervoltage lockout protection (UVLO) monitors the voltage of the V_{REG5} pin. When the V_{REG5} voltage is lower than UVLO threshold voltage, the TPS54227 is shut off. This is protection is non-latching.

7.3.6 Thermal Shutdown

TPS54227 monitors the temperature of itself. If the temperature exceeds the threshold value (typically 165°C), the device is shut off. This is non-latch protection.

Copyright © 2011–2015, Texas Instruments Incorporated

7.4 Device Functional Modes

7.4.1 Normal Operation

When the input voltage is above the UVLO threshold and the EN voltage is above the enable threshold, the TPS54227 operates in normal switching mode. Normal continuous conduction mode (CCM) occurs when the minimum switch current is above 0 A. In CM the TPS54227 operates at a quasi-fixed frequency of 650 kHz.

7.4.2 Forced CCM Operation

When the TPS54227 is in normal CCM operating mode and the switch current falls below 0 A, the device begins operating in forced CCM.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPS54227 is used as a step converter that converts a voltage of 4.5 to 18 V to a lower voltage. WEBENCH[™] software is available to aid in the design and analysis of circuits.

8.2 Typical Application

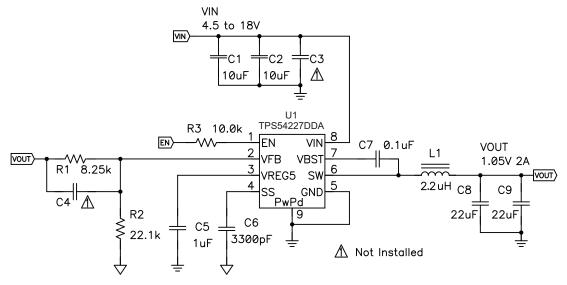


Figure 8. Typical Application

8.2.1 Design Requirements

Table 1 lists the design requirements for this example.

SPECIFICATIONS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input voltage		4.5	12	18	V
Output voltage			1.05		V
Operating frequency	V _{IN} = 12 V, I _o = 1 A		700		kHz
Output current range		0		12	А

8.2.2 Detailed Design Procedure

To begin the design process, you must know a few application parameters:

- Input voltage range
- Output voltage
- Output current
- Output voltage ripple
- Input voltage ripple

8.2.2.1 Output Voltage Resistors Selection

The output voltage is set with a resistor divider from the output node to the VFB pin. TI recommends to use 1% tolerance or better divider resistors. Start by using Equation 2 to calculate V_{OUT} .

To improve efficiency at very light loads consider using larger value resistors, too high of resistance is more susceptible to noise and voltage errors from the VFB input current is more noticeable.

$$V_{OUT} = 0.765 \times \left(1 + \frac{R1}{R2}\right)$$

8.2.2.2 Output Filter Selection

The output filter used with the TPS54227 is an LC circuit. This LC filter has double pole at:

$$F_{\rm P} = \frac{1}{2\pi \sqrt{L_{\rm OUT} \times C_{\rm OUT}}}$$
(3)

At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal gain of the TPS54227. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls off at a -40 dB per decade rate and the phase drops rapidly. D-CAP2 introduces a high frequency zero that reduces the gain roll off to -20 dB per decade and increases the phase to 90 degrees one decade above the zero frequency. The inductor and capacitor selected for the output filter must be selected so that the double pole of Equation 3 is located below the high frequency zero but close enough that the phase boost provided be the high frequency zero provides adequate phase margin for a stable circuit. To meet this requirement use the values recommended in Table 2.

Output Voltage (V)	R1 (kΩ)	R2 (kΩ)	C4 (pF) ⁽¹⁾	L1 (µH)	C8 + C9 (µF)
1	6.81	22.1		1.5 - 2.2	22 - 68
1.05	8.25	22.1		1.5 - 2.2	22 - 68
1.2	12.7	22.1		2.2	22 - 68
1.5	21.5	22.1		2.2	22 - 68
1.8	30.1	22.1	5 - 22	3.3	22 - 68
2.5	49.9	22.1	5 - 22	3.3	22 - 68
3.3	73.2	22.1	5 - 22	3.3	22 - 68
5	124	22.1	5 - 22	4.7	22 - 68
6.5	165	22.1	5 - 22	4.7	22 - 68

Table 2. Recommended Component Values

(1) Optional

Because the DC gain is dependent on the output voltage, the required inductor value increases as the output voltage increases. For higher output voltages at or above 1.8 V, additional phase boost can be achieved by adding a feed forward capacitor (C4) in parallel with R1

The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 4, Equation 5 and Equation 6. The inductor saturation current rating must be greater than the calculated peak current and the RMS or heating current rating must be greater than the calculated RMS current. Use 700 kHz for f_{SW} .

Use 700 kHz for f_{SW} . Make sure the chosen inductor is rated for the peak current of Equation 5 and the RMS current of Equation 6.

EXAS

NSTRUMENTS

www.ti.com

= I

www.ti.com

Т

$$I_{\text{IPP}} = \frac{V_{\text{OUT}}}{V_{\text{IN}(\text{max})}} \times \frac{V_{\text{IN}(\text{max})} - V_{\text{OUT}}}{L_{\text{O}} \times f_{\text{SW}}}$$

$$I_{\text{L}} = I_{\text{O}} + \frac{I_{\text{Ipp}}}{I_{\text{O}}}$$
(4)

$$I_{\text{Lo}(\text{RMS})} = \sqrt{I_{\text{O}}^{2} + \frac{1}{12} I_{\text{IPP}}^{2}}$$
(5)
(6)

For this design example, the calculated peak current is 2.311 A and the calculated RMS current is 2.008 A. The inductor used is a TDK CLF7045T-2R2M with a peak current rating of 5.5 A and an RMS current rating of 4.3 A.

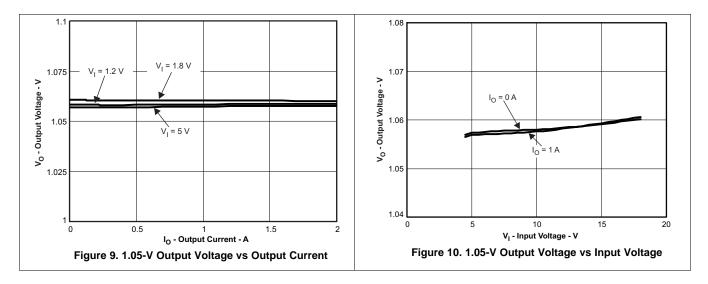
The capacitor value and ESR determines the amount of output voltage ripple. The TPS54227 is intended for use with ceramic or other low ESR capacitors. Recommended values range from 22 µF to 68 µF. Use Equation 7 to determine the required RMS current rating for the output capacitor.

$$I_{Co(RMS)} = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{\sqrt{12} \times V_{IN} \times L_O \times f_{SW}}$$
(7)

For this design two TDK C3216X5R0J226M 22- μ F output capacitors are used. The typical ESR is 2 m Ω each. The calculated RMS current is 0.18 A and each output capacitor is rated for 4A.

8.2.2.3 Input Capacitor Selection

The TPS54227 requires an input decoupling capacitor and a bulk capacitor is needed depending on the application. A ceramic capacitor over 10 µF is recommended for the decoupling capacitor. An additional 0.1-µF capacitor (C3) from pin 8 to ground is optional to provide additional high frequency filtering. The capacitor voltage rating needs to be greater than the maximum input voltage.

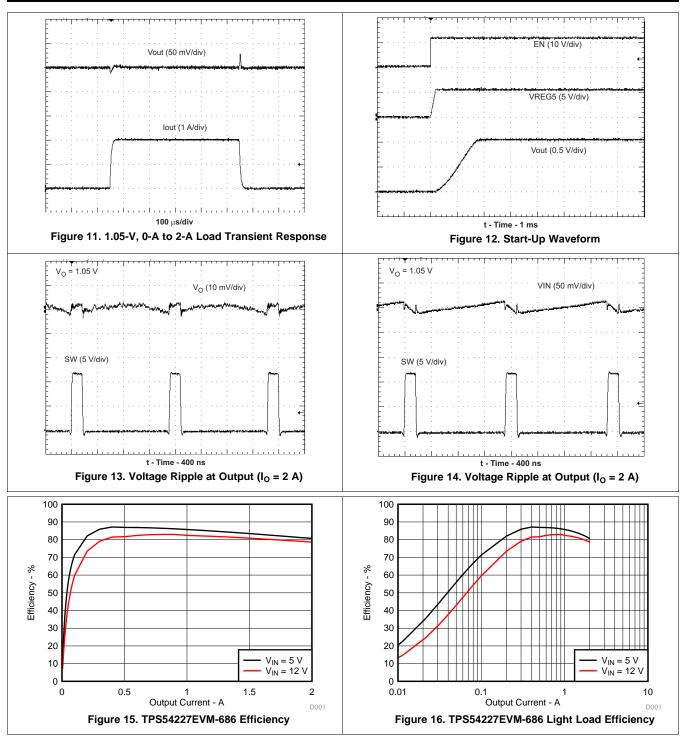

8.2.2.4 Bootstrap Capacitor Selection

A 0.1-µF ceramic capacitor must be connected between the VBST to SW pin for proper operation. TI recommends to use a ceramic capacitor.

8.2.2.5 VREG5 Capacitor Selection

A 1-µF ceramic capacitor must be connected between the VREG5 to GND pin for proper operation. TI recommends to use a ceramic capacitor.

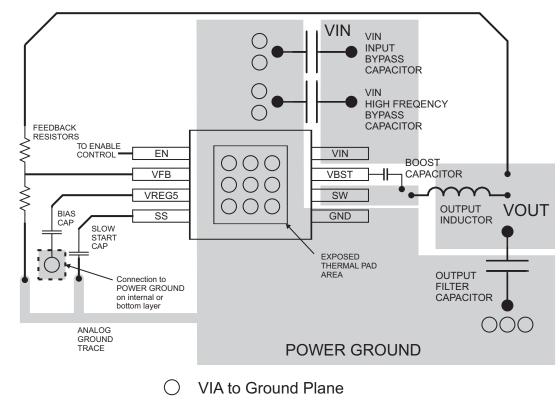
8.2.3 Application Curves



TPS54227

SLVSAU2C - MAY 2011 - REVISED DECEMBER 2015

www.ti.com


9 Power Supply Recommendations

The TPS54227 is designed to operate from input supply voltage in the range of 4.5 V to 18 V. Buck converters require the input voltage to be higher than the output voltage.

10 Layout

10.1 Layout Guidelines

- 1. Keep the input switching current loop as small as possible.
- 2. Keep the SW node as physically small and short as possible to minimize parasitic capacitance and inductance and to minimize radiated emissions. Kelvin connections should be brought from the output to the feedback pin of the device.
- 3. Keep analog and non-switching components away from switching components.
- 4. Make a single point connection from the signal ground to power ground.
- 5. Do not allow switching current to flow under the device.
- 6. Keep the pattern lines for VIN and PGND broad.
- 7. Exposed pad of device must be connected to PGND with solder.
- 8. VREG5 capacitor should be placed near the device, and connected PGND.
- 9. Output capacitor should be connected to a broad pattern of the PGND.
- 10. Voltage feedback loop should be as short as possible, and preferably with ground shield.
- 11. Lower resistor of the voltage divider which is connected to the VFB pin should be tied to SGND.
- 12. Providing sufficient via is preferable for VIN, SW and PGND connection.
- 13. PCB pattern for VIN, SW, and PGND should be as broad as possible.
- 14. VIN Capacitor should be placed as near as possible to the device.

10.2 Layout Examples

Figure 17. PCB Layout for the DDA Package

INSTRUMENTS

Texas

Layout Examples (continued)

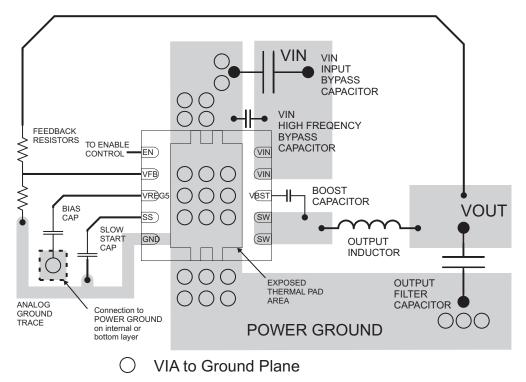


Figure 18. PCB Layout for the DRC Package

10.3 Thermal Considerations

This 8-pin HSOP package incorporates an exposed thermal pad that is designed to be directly to an external heartsick. The thermal pad must be soldered directly to the printed-circuit-board (PCB). After soldering, the PCB can be used as a heartsick. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heartsick structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the exposed thermal pad and how to use the advantage of its heat dissipating abilities, refer to *PowerPAD™* Thermally Enhanced Package (SLMA002) and *PowerPAD™* Made Easy (SLMA004).

The exposed thermal pad dimensions for this package are shown in Figure 19.

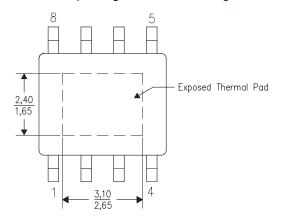


Figure 19. Thermal Pad Dimensions (Top View)

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

- PowerPAD[™] Thermally Enhanced Package, SLMA002
- PowerPAD[™] Made Easy, SLMA004

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

D-CAP2, WEBENCH, PowerPAD, E2E are trademarks of Texas Instruments. Blu-ray Disc is a trademark of Blu-ray Disc Association. All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TPS54227DDA	ACTIVE	SO PowerPAD	DDA	8	75	RoHS & Green	(6) NIPDAU SN	Level-2-260C-1 YEAR	-40 to 85	54227	
11 33422700A	ACTIVE	SO I Owell AD	DDA	0	75	Kons & Green		Level-2-2000-1 TEAK	-40 10 00	54221	Samples
TPS54227DDAR	ACTIVE	SO PowerPAD	DDA	8	2500	RoHS & Green	NIPDAU SN	Level-2-260C-1 YEAR	-40 to 85	54227	Samples
TPS54227DRCR	ACTIVE	VSON	DRC	10	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	54227	Samples
TPS54227DRCT	ACTIVE	VSON	DRC	10	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	54227	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures. "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

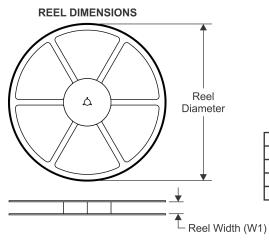
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

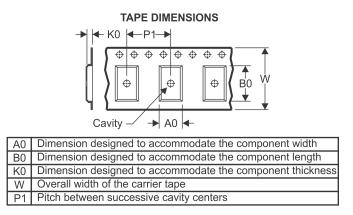
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

10-Dec-2020

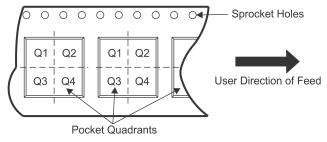
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

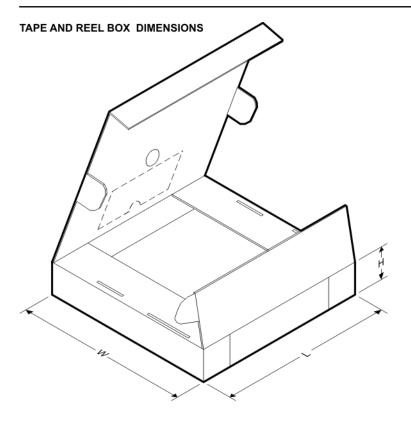

www.ti.com

Texas Instruments


TAPE AND REEL INFORMATION

*All dimensions are nominal

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

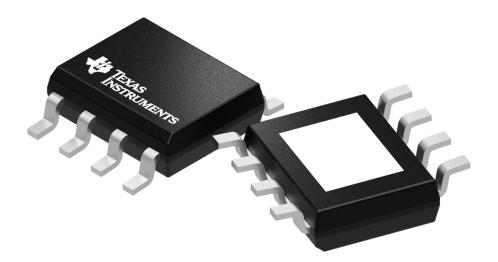

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS54227DDAR	SO Power PAD	DDA	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
TPS54227DRCR	VSON	DRC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS54227DRCT	VSON	DRC	10	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

27-Apr-2020

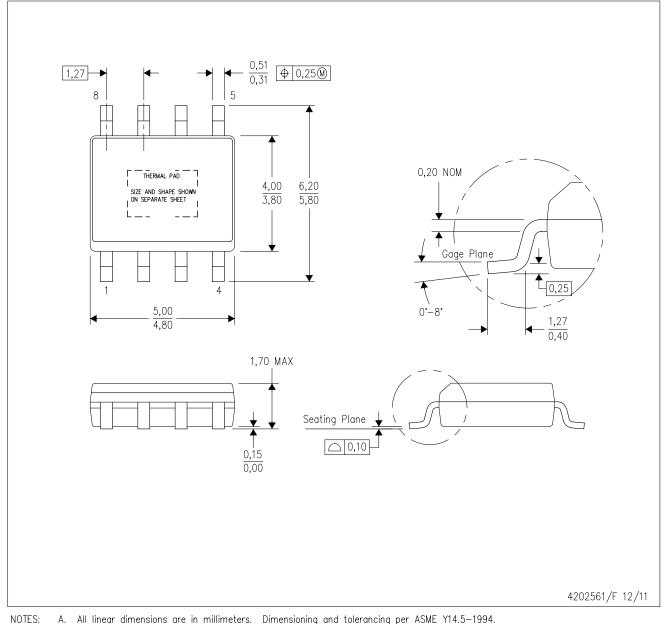

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS54227DDAR	SO PowerPAD	DDA	8	2500	366.0	364.0	50.0
TPS54227DRCR	VSON	DRC	10	3000	367.0	367.0	35.0
TPS54227DRCT	VSON	DRC	10	250	210.0	185.0	35.0

GENERIC PACKAGE VIEW

DDA 8

PowerPAD[™] SOIC - 1.7 mm max height PLASTIC SMALL OUTLINE



Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

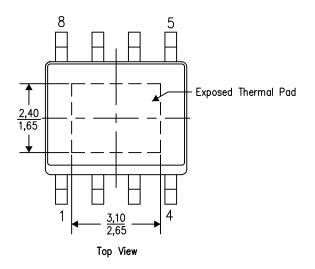
DDA (R-PDSO-G8)

PowerPAD ™ PLASTIC SMALL-OUTLINE

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. This package complies to JEDEC MS-012 variation BA

PowerPAD is a trademark of Texas Instruments.

DDA (R-PDSO-G8)


PowerPAD[™] PLASTIC SMALL OUTLINE

THERMAL INFORMATION

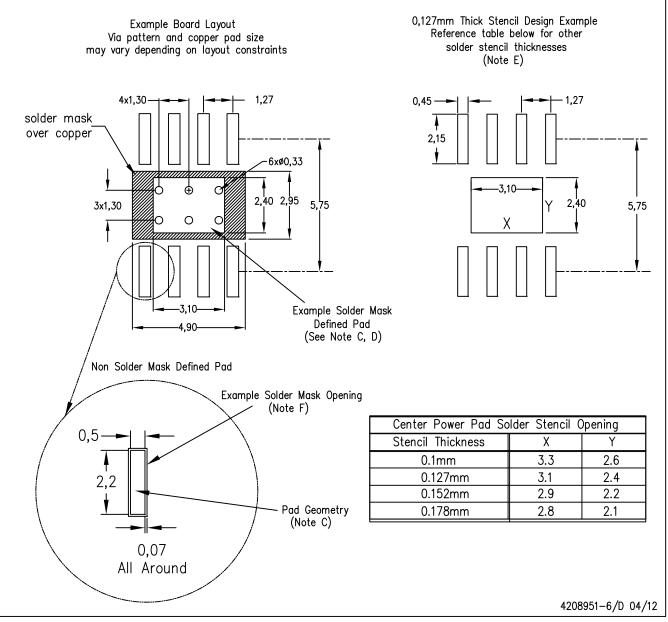
This PowerPAD^{\mathbb{N}} package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Exposed Thermal Pad Dimensions

4206322-6/L 05/12


NOTE: A. All linear dimensions are in millimeters

PowerPAD is a trademark of Texas Instruments

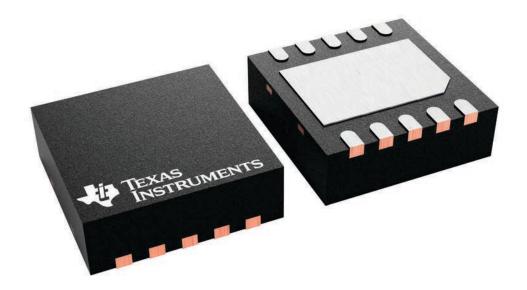
DDA (R-PDSO-G8)

PowerPAD[™] PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. PowerPAD is a trademark of Texas Instruments.

DRC 10

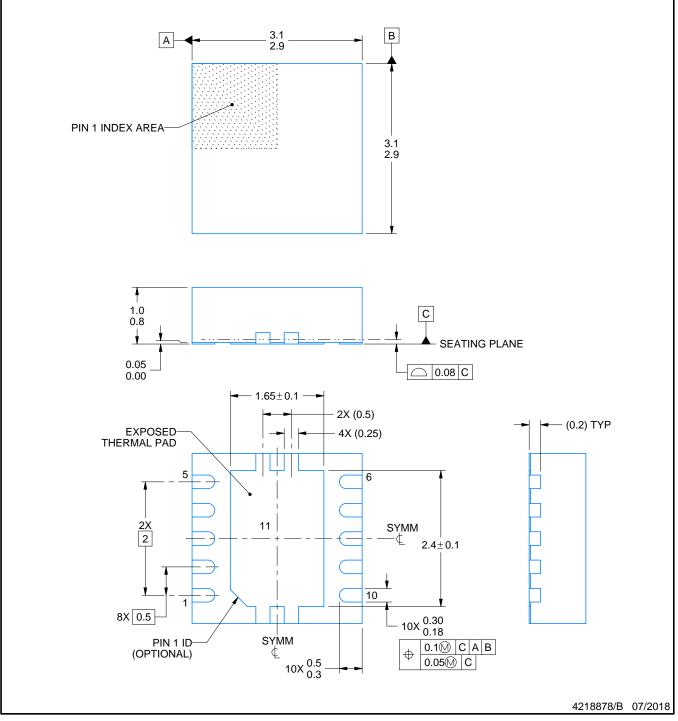

3 x 3, 0.5 mm pitch

GENERIC PACKAGE VIEW

VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


DRC0010J

PACKAGE OUTLINE

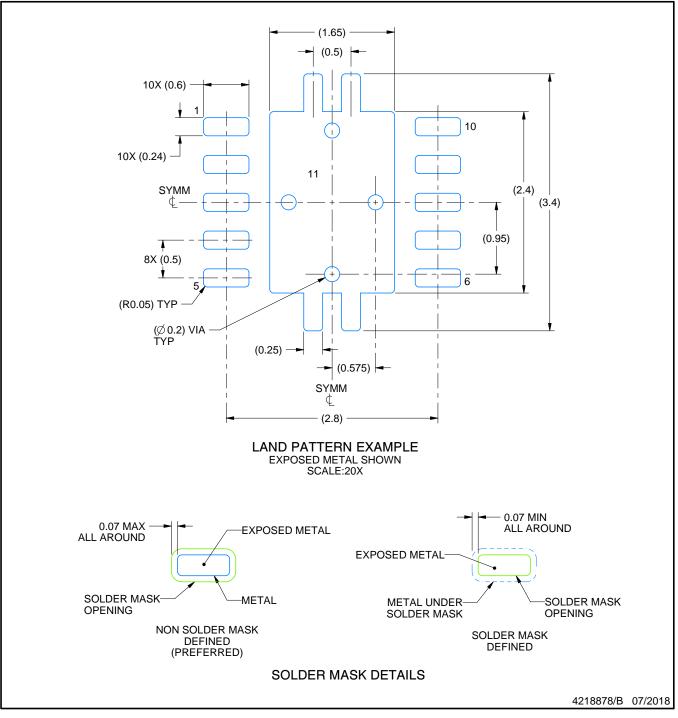
VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.

3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.



DRC0010J

EXAMPLE BOARD LAYOUT

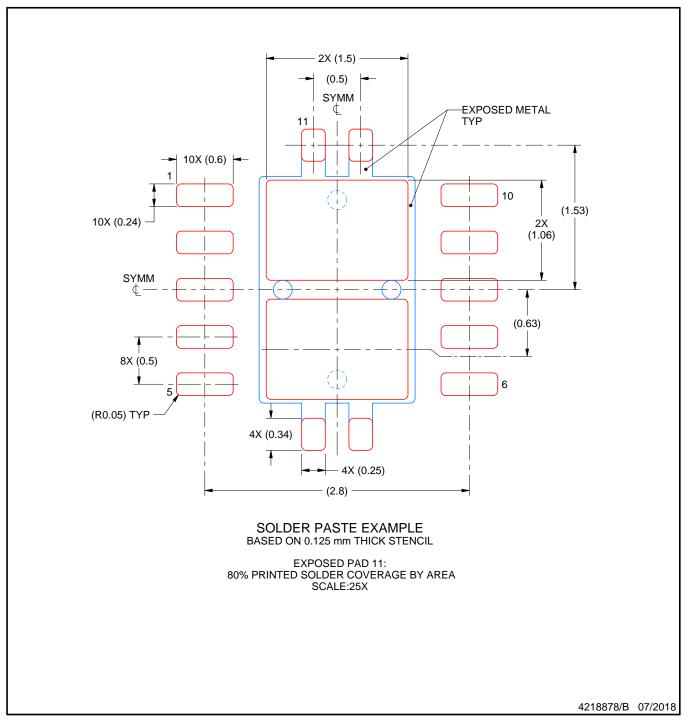
VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



DRC0010J

EXAMPLE STENCIL DESIGN

VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated