3.0V TO 5.5V LOW POWER MULTICHANNEL RS-232 LINE TRANSCEIVERS USING FOR $0.1 \mu F$ EXTERNAL CAPACITORS

■ DESCRIPTION

The UTC UT3232 has two receivers and two drivers, and a dual charge-pump circuit. The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3.0 V to 5.5 V supply. The device operates at data signaling rates up to $250 \mathrm{kbit} / \mathrm{s}$ and a maximum of $35 \mathrm{~V} / \mu \mathrm{s}$ driver output slew rate.

- FEATURES

* Exceeds ± 8 KV ESD Protection(HBM) for RS-232 I/O Pins
* Meets the Requirements of TIA/EIA-232-F and ITU V. 28 Standards
* Operates With 3.0 V to 5.5 V Vcc Supply
* Operates Up To 250kbit/s Data Rate
* Two Drivers and Two Receivers
* External Capacitors $4 \times 0.1 \mu \mathrm{~F}$
* Accepts 5.0V Logic Input With 3.3V Supply

- ORDERING INFORMATION

Ordering Number		Package	Packing
Lead Free	Halogen Free		
UT3232L-S16-R	UT3232G-S16-R	SOP-16	Tape Reel
UT3232L-R16-R	UT3232G-R16-R	SSOP-16	Tape Reel
UT3232L-R16N-R	UT3232G-R16N-R	SSOP-16N	Tape Reel
UT3232L-P16-R	UT3232G-P16-R	TSSOP-16	Tape Reel

UT3232G-S16-R
(1)Packing Type
(2)Package Type
(3)Green Package
(1) R: Tape Reel
(2) S16: SOP-16, R16: SSOP-16, R16N: SSOP-16N P16: TSSOP-16
(3) G: Halogen Free and Lead Free, L: Lead Free

■ MARKING

- PIN CONFIGURATION

C1+	1	O		16	V_{CC}
V+	2			15	GND
C1-	3			14	DOUT1
C2+	4			13	RIN1
C2-	5			12	ROUT1
V-	6			11	DIN1
DOUT2	7			10	DIN2
RIN2	8			9	ROUT2

- PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	C1+	Positive Terminal of Voltage-Doubler Charge-Pump Capacitor
2	V+	+5.5 V Generated by the Charge Pump
3	C1-	Negative Terminal of Voltage-Doubler Charge-Pump Capacitor
4	C2+	Positive Terminal of Inverting Charge-Pump Capacitor
5	C2-	Negative Terminal of Inverting Charge-Pump Capacitor
6	V-	-5.5 Generated by the Charge Pump
7	DOUT2	RS-232 Driver Outputs
8	RIN2	RS-232 Receiver Inputs
9	ROUT2	TTL/CMOS Receiver Outputs
10	DIN2	TTL/CMOS Driver Inputs
11	DIN1	TTL/CMOS Driver Inputs
12	ROUT1	TTL/CMOS Receiver Outputs
13	RIN1	RS-232 Receiver Inputs
14	DOUT1	RS-232 Driver Outputs
15	GND	Ground
16	VCC	$+3.0 V$ to +5.5V Supply Voltage

- BLOCK DIAGRAM

- ABSOLUTE MAXIMUM RATING [Over operating free-air temperature range (unless otherwise noted)]

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage Range	$\mathrm{V}_{\text {cc }}$	-0.3 ~+6.0	V
Positive Output Supply Voltage Range (Note 2)	V+	-0.3 ~ + 7.0	V
Negative Output Supply Voltage Range (Note 2)	V -	+0.3 ~-7.0	V
Supply Voltage Difference (Note 2)	$\mathrm{V}+\mathrm{-V}$ -	+13	V
Input Voltage	V IN	-0.3~+6.0	V
		-25~+25	V
Output Voltage	Vout	-13.2 ~ +13.2	V
		$-0.3 \sim \mathrm{~V}_{\mathrm{cc}}+0.3$	V
Operating Virtual Junction Temperature	TJ	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-65 ~ +150	${ }^{\circ} \mathrm{C}$

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
2. All voltages are with respect to network GND.

- THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT
Junction to Ambient	SOP-16	$\theta_{\text {JA }}$	130	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\begin{aligned} & \hline \text { SSOP-16 } \\ & \text { SSOP-16N } \\ & \text { TSSOP-16 } \end{aligned}$		160	

- RECOMMENDED OPERATING CONDITIONS (See Note \& Table 1)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Supply Voltage	V_{cc}	$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$		3.0	3.3	3.6	V
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		4.5	5.0	5.5	V
Driver and Control High-level Input Voltage	V_{1}	DIN	$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$	2.0			V
			$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$	2.4			
Driver and Control Low-level Input Voltage	$V_{\text {IL }}$	DIN				0.8	V
Driver and Control Input Voltage	$\mathrm{V}_{\text {IN }}$	DIN				5.5	V
Receiver Input Voltage	$\mathrm{V}_{\text {RIN }}$			-25		25	V
Operating Free-Air Temperature	T_{A}			-40		+85	${ }^{\circ} \mathrm{C}$

Notes: Test conditions are $\mathrm{C} 1 \sim \mathrm{C} 4=0.1 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} ; \mathrm{C} 1=0.047 \mu \mathrm{~F}, \mathrm{C} 2 \sim \mathrm{C} 4=0.33 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

ELECTRICAL CHARACTERISTICS [(over recommended ranges of supply voltage and operating
free-air temperature (unless otherwise noted) (see Note 3 \& Table 1)]

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (Note 1) } \end{array}$	MAX	UNIT
Supply Current	Icc	No load		0.3	1.0	mA
DRIVER SECTION						
High-Level Output Voltage	VOH	DOUT at $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ to GND, DIN=GND	+5.0	+5.4		V
Low-Level Output Voltage	VoL	DOUT at $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ to $\mathrm{GND}, \mathrm{DIN}=\mathrm{V}_{\text {cc }}$	-5.0	-5.4		V
High-Level Input Current	IOH	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$		± 0.01	± 1	$\mu \mathrm{A}$
Low-Level Input Current	lOL	V_{1} at GND		± 0.01	± 1	$\mu \mathrm{A}$
Short-Circuit Output Current (Note 2)	los	$\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$		± 35	± 60	mA
		$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$		± 35	± 60	mA
Output Resistance	ro	$\mathrm{V}_{\mathrm{cc}}, \mathrm{V}+\mathrm{and} \mathrm{V}$ - $=0 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}= \pm 2.0 \mathrm{~V}$	300	10M		Ω
RECEIVER SECTION						
High-Level Output Voltage	V OH	$\mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\text {cc-0 }} 0.6 \mathrm{~V}$	$\mathrm{V}_{\mathrm{cc}}-0.1 \mathrm{~V}$		V
Low-Level Output Voltage	V_{OL}	$\mathrm{loL}_{\mathrm{O}}=1.6 \mathrm{~mA}$			0.4	V
Positive-Going Input Threshold Voltage	$\mathrm{V}_{1 \text { T }}$	$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$		1.5	2.4	V
		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$		1.8	2.4	V
Negative-Going Input Threshold Voltage	$V_{\text {IT }}$ -	$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$	0.6	1.2		V
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	0.8	1.5		V
Input Hysteresis	$\mathrm{V}_{\text {HYS }}$	$\mathrm{V}_{1 T+} \sim \mathrm{V}_{\text {IT }}$		0.3		V
Input Resistance	R_{l}	$\mathrm{V}_{1}= \pm 3.0 \mathrm{~V} \sim \pm 25 \mathrm{~V}$	3	5	7	$\mathrm{k} \Omega$

Notes: 1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Short-circuit durations should be controlled to prevent exceeding the device absolute power-dissipation ratings, and not more than one output should be shorted at a time.
3. Test conditions are $\mathrm{C} 1 \sim \mathrm{C} 4=0.1 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$; $\mathrm{C} 1=0.047 \mu \mathrm{~F}, \mathrm{C} 2 \sim \mathrm{C} 4=0.33 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
4. Pulse skew is defined as $\left|\mathrm{tp}_{\mathrm{LH}}{ }^{-} \mathrm{t}_{\text {PHL }}\right|$ of each channel of the same device.

- SWITCHING CHARACTERISTICS [over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 3 and Table 1)]

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	$\begin{array}{\|c\|} \hline \text { TYP } \\ \text { (Note 1) } \end{array}$	MAX	UNIT
DRIVER SECTION							
Maximum Data Rate		$C_{L}=1000 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$, One Driver Switching		250			Kbit/s
Pulse Skew (Note 4)	$\mathrm{tsK}_{\text {(p) }}$	$\mathrm{C}_{\mathrm{L}}=220 \mathrm{pF} \sim 2500 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \sim 7 \mathrm{k} \Omega$			300		ns
Slew Rate, Transition Region	SR(tr)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \sim 7 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{Cc}}=3.3 \mathrm{~V} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=220 \mathrm{pF} \sim 1000 \mathrm{pF}$	5		35	$\mathrm{V} / \mathrm{\mu s}$
			$\mathrm{C}_{\mathrm{L}}=220 \mathrm{pF} \sim 2500 \mathrm{pF}$	3		35	
RECEIVER SECTION							
Propagation Delay Time, Lowto High-Level Output	$t_{\text {PLH }}$	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$			300		ns
Propagation Delay Time, Highto Low-Level Output	tphL	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$			300		ns
Pulse Skew (Note 4)	$\mathrm{tsk}_{\text {(P) }}$	\|tPLH-t ${ }_{\text {PHL }}$ \|			300		ns

Notes: 1. All typical values are at $\mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Short-circuit durations should be controlled to prevent exceeding the device absolute power-dissipation ratings, and not more than one output should be shorted at a time.
3. Test conditions are $\mathrm{C} 1 \sim \mathrm{C} 4=0.1 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$; $\mathrm{C} 1=0.047 \mu \mathrm{~F}, \mathrm{C} 2 \sim \mathrm{C} 4=0.33 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
4. Pulse skew is defined as $\left|t_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right|$ of each channel of the same device.

- TYPICAL APPLICATION CIRCUIT

Notes: 1. C 3 can be connected to V_{Cc} or $G N D$.
2. Resistor values shown are nominal.
3. NC: No internal connection.
4. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

Table1. Typical Operating Circuit and Capacitor Values

$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$	$\mathrm{C} 1(\mu \mathrm{~F})$	$\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4(\mu \mathrm{~F})$	$\mathrm{C}_{\text {BYPASS }}(\mu \mathrm{F})$
$3.0 \sim 3.6$	0.22	0.22	0.22
$3.15 \sim 3.6$	0.1	0.1	0.1
$4.5 \sim 5.5$	0.047	0.33	0.047
$3.0 \sim 5.5$	0.22	1.0	0.22

[^0]
[^0]: UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

