SN74LVC245A Octal Bus Transceiver With 3-State Outputs

1 Features

- Operates From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max $t_{p d}$ of 6.3 ns at 3.3 V
- Typical $\mathrm{V}_{\text {Olp }}$ (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Typical $\mathrm{V}_{\mathrm{OHV}}$ (Output V_{OH} Undershoot) $>2 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- $I_{\text {off }}$ Supports Live Insertion, Partial-Power-Down Mode and Back Drive protection
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V ${ }_{\text {CC }}$)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model
- 1000-V Charged-Device Model

2 Applications

- Cable Modem Termination Systems
- Servers
- LED Displays
- Network Switches
- Telecom Infrastructure
- Motor Drivers
- I/O Expanders

3 Description

These octal bus transceivers are designed for $1.65-\mathrm{V}$ to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{Cc}}$ operation. The 'LVC245A devices are designed for asynchronous communication between data buses.

Device Information		
${ }^{(1)}$		
PART NUMBER	PACKAGE (PIN)	BODY SIZE
SN74LVC245A	$\operatorname{VQFN}(20)$	$4.50 \mathrm{~mm} \times 3.50 \mathrm{~mm}$
	SSOP (20)	$7.50 \mathrm{~mm} \times 5.30 \mathrm{~mm}$
	TSSOP (20)	$6.50 \mathrm{~mm} \times 4.40 \mathrm{~mm}$
	TVSOP (20)	$5.00 \mathrm{~mm} \times 4.40 \mathrm{~mm}$
	SOIC (20)	$12.80 \mathrm{~mm} \times 7.50 \mathrm{~mm}$

(1) For all available packages, see the orderable addendum at the end of the data sheet.

4 Simplified Schematic

To Seven Other Channels
Pin numbers shown are for the DB, DGV, DW, N, NS, PW, and RGY packages.

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Simplified Schematic 1
5 Revision History 2
6 Pin Configuration and Functions 3
7 Specifications 4
7.1 Absolute Maximum Ratings 4
7.2 ESD Ratings 4
7.3 Recommended Operating Conditions 5
7.4 Thermal Information 5
7.5 Electrical Characteristics. 6
7.6 Switching Characteristics 6
7.7 Operating Characteristics 7
7.8 Typical Characteristics. 7
8 Parameter Measurement Information 8
9 Detailed Description 9
5 Revision History
Changes from Revision W (May 2013) to Revision X Page

- Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Typical Characteristics, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section 1
- Deleted Ordering Information table. 1
Changes from Revision V (September 2010) to Revision W Page
- Added $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature specification to Recommended Operating Conditions table. 5

6 Pin Configuration and Functions

GQN OR ZON PACKAG （TOP VIEW）				
	1	2	3	4
A (こに				
B	にしくし			
C	にしにし			
D	にしく			
	にしく			

DB，DGV，DW，N，NS，OR PW PACKAGE （TOP VIEW）

	RGY PACKAGE （TOP VIEW）		
	$\stackrel{\Upsilon}{\square}$	U	
	1	20	
A1	2	－ 19	OE
A2	3	18	B1
A3	4	｜ 17	B2
A4	5	｜ 16	B3
A5	61	｜ 15	B4
A6	7 1	｜ 14	B5
A7	81	113	B6
A8	9 L	－ 12	B7
	10	11	
	\sum_{0}	$\underset{\sim}{\infty}$	

Pin Functions

PIN				
NAME	DB，DGV， DW，NS，PW， and RGY	GQN or ZQN	TYPE	
A1	2	A1		Transceiver I／O pin
A2	3	B3	I／O	Transceiver I／O pin
A3	4	B1	I／O	Transceiver I／O pin
A4	5	C2	I／O	Transceiver I／O pin
A5	6	C1	I／O	Transceiver I／O pin
A6	7	D3	I／O	Transceiver I／O pin
A7	8	D1	I／O	Transceiver I／O pin
A8	9	E2	I／O	Transceiver I／O pin
B1	18	B4	I／O	Transceiver I／O pin
B2	17	B2	I／O	Transceiver I／O pin
B3	16	C4	I／O	Transceiver I／O pin
B4	15	C3	I／O	Transceiver I／O pin
B5	14	D4	I／O	Transceiver I／O pin
B6	13	D2	I／O	Transceiver I／O pin
B7	12	E4	I／O	Transceiver I／O pin
B8	11	E3	I／O	Transceiver I／O pin
DIR	1	A2	I	Direction control．When high，the signal propagates from A to B．When low，the signal propagates from B to A． OE
GND	19	A4	I	Output enable
VCC	20	A3		Ground

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

			MIN	MAX	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage range		-0.5	6.5	V
V_{1}	Input voltage range ${ }^{(2)}$		-0.5	6.5	V
V_{0}	Voltage range applied to any output in the	or power-off state ${ }^{(2)}$	-0.5	6.5	V
V_{0}	Voltage range applied to any output in th	${ }^{(2)}$ (3)	-0.5	$\mathrm{V}_{C C}+0.5$	V
I_{IK}	Input clamp current	$\mathrm{V}_{1}<0$		-50	mA
l_{OK}	Output clamp current	$\mathrm{V}_{\mathrm{O}}<0$		-50	mA
l_{0}	Continuous output current			± 50	mA
	Continuous current through $\mathrm{V}_{\text {CC }}$ or GND			± 100	mA
$\mathrm{T}_{\text {stg }}$		Storage temperature range	-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
(3) The value of V_{CC} is provided in the Recommended Operating Conditions table.

7.2 ESD Ratings

	PARAMETER	DEFINITION	VALUE	UNIT
$V_{\text {(ESD) }}$	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ${ }^{(1)}$	2000	V
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ${ }^{(2)}$	1000	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

7.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		SN74LVC245A								$\begin{gathered} \text { UNI } \\ \mathbf{T} \end{gathered}$
		DB ${ }^{(2)}$	DGV ${ }^{(2)}$	DW ${ }^{(2)}$	$\begin{aligned} & \text { GQN or } \\ & \text { ZQN }^{(2)} \end{aligned}$	$\mathrm{N}^{(2)}$	NS ${ }^{(2)}$	PW ${ }^{(2)}$	RGY ${ }^{(3)}$	
		20 PINS								
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance	106.5	124.1	92.9	78	59.2	83.6	108.1	44.0	$\begin{aligned} & { }^{\circ} \mathrm{C} / \\ & \mathrm{W} \end{aligned}$
$\mathrm{R}_{\text {өJC }(t}$ op)	Junction-to-case(top) thermal resistance	68.1	39.5	60.6		44.9	49.4	43.0	53.0	
$\mathrm{R}_{\text {өJB }}$	Junction-to-board thermal resistance	61.7	65.5	60.4		40.1	51.2	59.1	22.1	
$\Psi_{\text {JT }}$	Junction-to-top characterization parameter	28.5	2.1	28.2		29.9	21.9	4.7	3.0	
$\Psi_{\text {JB }}$	Junction-to-board characterization parameter	61.2	64.9	60.0		39.9	50.8	58.6	22.2	
$R_{\text {өJC (b }}$ ot)	Junction-to-case(bottom) thermal resistance	-	-	-		-	-	-	16.6	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) The package thermal impedance is calculated in accordance with JESD 51-7.
(3) The package thermal impedance is calculated in accordance with JESD 51-5.

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25 \mathrm{C}$.
(2) This applies in the disabled state only.
(3) For I/O ports, the parameter I_{Oz} includes the input leakage current.

7.6 Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{gathered} -40^{\circ} \mathrm{C} \text { тO } \\ 85^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -40^{\circ} \mathrm{C} \text { TO } \\ 125^{\circ} \mathrm{C} \end{gathered}$		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
t_{pd}	A or B	B or A	$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	1	6	12.2	1	12.7	1	13.7	ns
			$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	1	3.9	7.8	1	8.3	1	9.1	
			2.7 V	1	4.2	7.1	1	7.3	1	8.3	
			$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	1.5	3.8	6.1	1.5	6.3	1.5	7.3	
$t_{\text {en }}$	$\overline{\mathrm{OE}}$	A or B	$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	1	7	14.8	1	15.3	1	16.8	ns
			$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	1	4.5	10	1	10.5	1	12	
			2.7 V	1	5.4	9.3	1	9.5	1	11	
			$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	1.5	4.4	8.3	1.5	8.5	1.5	10	
$t_{\text {dis }}$	$\overline{\mathrm{OE}}$	A or B	$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	1	7.8	16.5	1	17	1	18	ns
			$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	1	4	9	1	9.5	1	10.5	
			2.7 V	1	4.4	8.3	1	8.5	1	9.5	
			$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	1.7	4.1	7.3	1.7	7.5	1.7	8.5	
$\mathrm{t}_{\text {sk(0) }}$			$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$					1		1.5	ns

www.ti.com

7.7 Operating Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS	V_{cc}	TYP	UNIT
C_{pd}	Power dissipation capacitance per transceiver	Outputs enabled	$\mathrm{f}=10 \mathrm{MHz}$	1.8 V	42	pF
				2.5 V	43	
				3.3 V	45	
				1.8 V	1	
		Outputs disabled		2.5 V	1	
				3.3 V	2	

7.8 Typical Characteristics

Figure 1. Propagation Delay (Low to High Transition) vs Load Capacitance

Figure 2. Propagation Delay (High to Low Transition) vs Load Capacitance

8 Parameter Measurement Information

TEST	S1
$\mathbf{t}_{\text {PLH }} / \mathbf{t}_{\text {PHL }}$	Open
$\mathbf{t}_{\text {PLZ }} / \mathbf{t}_{\text {PZL }}$	$\mathbf{V}_{\text {LOAD }}$
$\mathbf{t}_{\text {PHZ }} / \mathrm{t}_{\text {PZH }}$	GND

LOAD CIRCUIT

V_{CC}	INPUTS		V_{M}	$\mathrm{V}_{\mathrm{LOAD}}$	C_{L}	R_{L}	V_{Δ}
	V_{I}	$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$					
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2 \mathrm{~ns}$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\mathrm{CC}}$	30 pF	$1 \mathrm{k} \Omega$	0.15 V
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2 \mathrm{~ns}$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\mathrm{CC}}$	30 pF	500Ω	0.15 V
2.7 V	2.7 V	$\leq 2.5 \mathrm{~ns}$	1.5 V	6 V	50 pF	500Ω	0.3 V
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	2.7 V	$\leq 2.5 \mathrm{~ns}$	1.5 V	6 V	50 pF	500Ω	0.3 V

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS enable and disable times
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
D. The outputs are measured one at a time, with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $\mathrm{t}_{\text {dis }}$.
F. $t_{\text {PZL }}$ and $\mathrm{t}_{\mathrm{PZH}}$ are the same as t_{en}.
G. $t_{\text {PLH }}$ and $t_{\text {PHL }}$ are the same as $t_{\text {pd }}$.
H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

9 Detailed Description

9.1 Overview

This octal bus transceiver is designed for $1.65-\mathrm{V}$ to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.
The SN74LVC245A device is designed for asynchronous communication between data buses. This device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable ($\overline{\mathrm{OE}}$) input can be used to disable the device so the buses effectively are isolated.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Inputs can be driven from either $3.3-\mathrm{V}$ or $5-\mathrm{V}$ devices. This feature allows the use of this device as a translator in a mixed $3.3-\mathrm{V} / 5-\mathrm{V}$ system environment.
This device is fully specified for partial-power-down applications using $\mathrm{I}_{\text {off }}$. The $\mathrm{I}_{\text {off }}$ circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

9.2 Functional Block Diagram

Pin numbers shown are for the DB, DGV, DW, N, NS, PW, and RGY packages.

9.3 Feature Description

- Allows down voltage translation
- 5 V to 3.3 V
- 5 V or 3.3 V to 1.8 V
- Inputs accept voltage levels up to 5.5 V

9.4 Device Functional Modes

Table 1. Function Table

INPUTS	OPERATION	
$\overline{\mathrm{OE}}$		
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the Tl component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

SN74LVC245A is a high drive CMOS device that can be used for a multitude of bus interface type applications where output drive or PCB trace length is a concern. The inputs can accept voltages to 5.5 V at any valid V_{CC} making it ideal for down translation.

10.2 Typical Application

Figure 4. Typical Application Schematic

10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.

10.2.2 Detailed Design Procedure

1. Recommended Input Conditions

- For rise time and fall time specifcations, see $(\Delta \mathrm{t} / \Delta \mathrm{V})$ in the Recommended Operating Conditions table.
- For specified high and low levels, see (V_{H} and V_{IL}) in the Recommended Operating Conditions table.
- Inputs are overvoltage tolerant allowing them to go as high as ($\mathrm{V}_{1} \mathrm{max}$) in the Recommended Operating Conditions table at any valid V_{CC}.

2. Recommend Output Conditions

- Load currents should not exceed (l_{0} max) per output and should not exceed (Continuous current through V_{cc} or GND) total current for the part. These limits are located in the Absolute Maximum Ratings table.
- Outputs should not be pulled above V_{cc}.

Typical Application (continued)

10.2.3 Application Curves

Figure 5. Output Drive Current (I_{OL}) vs LOW-level Output Voltage (V_{oL})

Figure 6. Output Drive Current (IOH) vs HIGH-level Output Voltage (V_{OH})

11 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the Recommended Operating Conditions table.
Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a $0.1 \mu \mathrm{~F}$ capacitor is recommended. If there are multiple V_{Cc} terminals then $0.01 \mu \mathrm{~F}$ or $0.022 \mu \mathrm{~F}$ capacitors are recommended for each power terminal. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. Multiple bypass capacitors may be paralleled to reject different frequencies of noise. The bypass capacitor should be installed as close to the power terminal as possible for the best results.

12 Layout

12.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4 -buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.
Specified in Figure 7 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC}, whichever makes more sense or is more convenient.

12.2 Layout Example

Figure 7. Layout Diagram

13 Device and Documentation Support

13.1 Trademarks

All trademarks are the property of their respective owners.

13.2 Electrostatic Discharge Caution

$\xrightarrow{\Delta}$
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.3 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

TEXAS
PACKAGE OPTION ADDENDUM
INSTRUMENTS
www.ti.com
27-May-2022

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SN74LVC245ADBR	ACTIVE	SSOP	DB	20	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A	Samples
SN74LVC245ADBRE4	ACTIVE	SSOP	DB	20	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A	Samples
SN74LVC245ADBRG4	ACTIVE	SSOP	DB	20	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A	Samples
SN74LVC245ADGVR	ACTIVE	TVSOP	DGV	20	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A	Samples
SN74LVC245ADW	ACTIVE	SOIC	DW	20	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC245A	Samples
SN74LVC245ADWR	ACTIVE	SOIC	DW	20	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC245A	Samples
SN74LVC245ADWRG4	ACTIVE	SOIC	DW	20	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC245A	Samples
SN74LVC245AN	ACTIVE	PDIP	N	20	20	RoHS \& Green	NIPDAU	N / A for Pkg Type	-40 to 125	SN74LVC245AN	Samples
SN74LVC245ANE4	ACTIVE	PDIP	N	20	20	RoHS \& Green	NIPDAU	N / A for Pkg Type	-40 to 125	SN74LVC245AN	Samples
SN74LVC245ANSR	ACTIVE	SO	NS	20	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LVC245A	Samples
SN74LVC245APW	ACTIVE	TSSOP	PW	20	70	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A	Samples
SN74LVC245APWE4	ACTIVE	TSSOP	PW	20	70	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A	Samples
SN74LVC245APWG4	ACTIVE	TSSOP	PW	20	70	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A	Samples
SN74LVC245APWR	ACTIVE	TSSOP	PW	20	2000	RoHS \& Green	NIPDAU \| SN	Level-1-260C-UNLIM	-40 to 125	LC245A	Samples
SN74LVC245APWRE4	ACTIVE	TSSOP	PW	20	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A	Samples
SN74LVC245APWRG3	ACTIVE	TSSOP	PW	20	2000	RoHS \& Green	SN	Level-1-260C-UNLIM	-40 to 125	LC245A	Samples
SN74LVC245APWRG4	ACTIVE	TSSOP	PW	20	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A	Samples
SN74LVC245APWT	ACTIVE	TSSOP	PW	20	250	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LC245A	Samples
SN74LVC245ARGYR	ACTIVE	VQFN	RGY	20	3000	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	LC245A	Samples

${ }^{(1)}$ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LVC245A :

- Enhanced Product : SN74LVC245A-EP

NOTE: Qualified Version Definitions:

- Enhanced Product - Supports Defense, Aerospace and Medical Applications

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 $(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN74LVC245ADBR | SSOP | DB | 20 | 2000 | 330.0 | 16.4 | 8.2 | 7.5 | 2.5 | 12.0 | 16.0 | Q1 |
| SN74LVC245ADGVR | TVSOP | DGV | 20 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |
| SN74LVC245ADWR | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.9 | 13.3 | 2.7 | 12.0 | 24.0 | Q1 |
| SN74LVC245ANSR | SO | NS | 20 | 2000 | 330.0 | 24.4 | 8.4 | 13.0 | 2.5 | 12.0 | 24.0 | Q1 |
| SN74LVC245APWR | TSSOP | PW | 20 | 2000 | 330.0 | 16.4 | 6.95 | 7.1 | 1.6 | 8.0 | 16.0 | Q1 |
| SN74LVC245APWR | TSSOP | PW | 20 | 2000 | 330.0 | 16.4 | 6.95 | 7.0 | 1.4 | 8.0 | 16.0 | Q1 |
| SN74LVC245APWRG3 | TSSOP | PW | 20 | 2000 | 330.0 | 16.4 | 6.95 | 7.1 | 1.6 | 8.0 | 16.0 | Q1 |
| SN74LVC245APWRG4 | TSSOP | PW | 20 | 2000 | 330.0 | 16.4 | 6.95 | 7.0 | 1.4 | 8.0 | 16.0 | Q1 |
| SN74LVC245APWT | TSSOP | PW | 20 | 250 | 330.0 | 16.4 | 6.95 | 7.1 | 1.6 | 8.0 | 16.0 | Q1 |
| SN74LVC245ARGYR | VQFN | RGY | 20 | 3000 | 330.0 | 12.4 | 3.8 | 4.8 | 1.6 | 8.0 | 12.0 | Q1 |

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC245ADBR	SSOP	DB	20	2000	356.0	356.0	35.0
SN74LVC245ADGVR	TVSOP	DGV	20	2000	356.0	356.0	35.0
SN74LVC245ADWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74LVC245ANSR	SO	NS	20	2000	367.0	367.0	45.0
SN74LVC245APWR	TSSOP	PW	20	2000	364.0	364.0	27.0
SN74LVC245APWR	TSSOP	PW	20	2000	356.0	356.0	35.0
SN74LVC245APWRG3	TSSOP	PW	20	2000	364.0	364.0	27.0
SN74LVC245APWRG4	TSSOP	PW	20	2000	356.0	356.0	35.0
SN74LVC245APWT	TSSOP	PW	20	250	356.0	356.0	35.0
SN74LVC245ARGYR	VQFN	RGY	20	3000	356.0	356.0	35.0

TUBE

- B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	$\mathbf{W}(\mathbf{m m})$	T $(\boldsymbol{\mu m})$	$\mathbf{B}(\mathbf{m m})$
SN74LVC245ADW	DW	SOIC	20	25	507	12.83	5080	6.6
SN74LVC245AN	N	PDIP	20	20	506	13.97	11230	4.32
SN74LVC245ANE4	N	PDIP	20	20	506	13.97	11230	4.32
SN74LVC245APW	PW	TSSOP	20	70	530	10.2	3600	3.5
SN74LVC245APWE4	PW	TSSOP	20	70	530	10.2	3600	3.5
SN74LVC245APWG4	PW	TSSOP	20	70	530	10.2	3600	3.5

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-150.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PIM **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	3,70	3,70	5,10	5,10	7,90	9,80	11,40
A MIN	3,50	3,50	4,90	4,90	7,70	9,60	11,20

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: $24 / 48$ Pins - MO-153

14/16/20/56 Pins - MO-194

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4225320/A 09/2019
NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

SOLDER MASK DETAILS

NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side
5. Reference JEDEC registration MS-013.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL

SCALE:6X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

PACKAGE OUTLINE
TSSOP - 1.2 mm max height

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

$P W$ (R-PDSO-G20)	PLASTIC SMALL OUTLINE
Example Board Layout	Based on a stencil thickness of .127 mm (.005inch).

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

