


An ISO/TS16949 and ISO 9001 Certified Company

TO-220 Plastic Package

BDX53, BDX53A, BDX53B, BDX53C BDX54, BDX54A, BDX54B, BDX54C

BDX53, 53A, 53B, 53C NPN PLASTIC POWER TRANSISTORS
BDX54, 54A, 54B, 54C PNP PLASTIC POWER TRANSISTORS
Power Darlingtons for Linear and Switching Applications

) B] F	⊸ ←
1 = 1	lΗ
	01
	0
	`
D → G ←	M ☐,
→ G ←	M → ←

	Α	14.42	16.51		
	В	9.63	10.67		
	С	3.56	4.83		
ım.	D		0.90		
	Е	1.15	1.40		
	F	3.75	3.88		
	G	2.29	2.79		
	Н	2.54	3.43		
	J		0.56		
nπ	K	12.70	14.73		
nsi	L	2.80	4.07		
Sio	М	2.03	2.92		
ii.	N		31.24		
All diminsions in mm.	0	DEG 7			
_					

ABSOLUTE MAXIMUM RATINGS

TIBOOLGIL THIRTHINGS								
			53	53A	53B	53C		
			54	54A	54B	54C		
Collector-base voltage (open emitter)	V_{CBO}	max.	45	60	80	100	V	
Collector-emitter voltage (open base)	V_{CEO}	max.	45	60	80	100	V	
Collector current	I_C	max.		8.	0		A	
Total power dissipation up to $T_C = 25^{\circ}C$	P_{tot}	max.		6	0		W	
Junction temperature	Tj	max.		15	50		°C	
Collector-emitter saturation voltage								
IC = 3 A; IB = 12 mA	V_{CEsat}	max.		2.	0		V	
D.C. current gain								
$I_C = 3 A; V_{CE} = 3 V$	h_{FE}	min.		750				
RATINGS (at T_A =25°C unless otherwise specified)								
Limiting values	, ,		53	53A	53B	53C		
			54	54A	54B	54C		
Collector-base voltage (open emitter)	V CBO	max.	45	60	80	100	V	
Collector-emitter voltage (open base)	V_{CEO}	max.	45	60	80	100	V	
Emitter-base voltage (open collector)	V_{EBO}	max.		5.0	0		V	

BDX53, BDX53A, BDX53B, BDX53C BDX54, BDX54A, BDX54B, BDX54C

Collector current	I_C	max.		.0		A
Collector current (Peak value)	I_{CM}	max.		2		A
Base current	IB	max.		.2		A
Total power dissipation upto T C=25°C	P_{tot}	max.		0		W
Derate above 25°C		max.		48		$W/^{\circ}C$
Junction temperature	T_j	max.	15	50		$^{\circ}C$
Storage temperature	T'_{stg}		-65	5 to +	150	<u>o</u> C
THERMAL RESISTANCE	D					00711
From junction to case	$R_{th j-c}$			08		°C/W
From junction to ambient	$R_{th j-a}$		7	.0		°C/W
CHARACTERISTICS						
$T_{amb} = 25$ °C unless otherwise specified		5.0	50.4	50D	53 0	
		53	53 A	53B	53C	
Collector cutoff current		54	54 A	54B	54C	
	I	max 0.2				mA
$I_B = 0; V_{CB} = 45 V$	I_{CBO}	max. 0.2	0.2	_	_	
$I_B = 0$; $V_{CB} = 60 \text{ V}$	I_{CBO}	max. –	-	0.2	_	mA mA
$I_B = 0$; $V_{CB} = 80 \text{ V}$ $I_{D} = 0$; $V_{CD} = 100 \text{ V}$	ICBO	max. –	_	-	0.2	mA
$I_B = 0; \ V_{CB} = 100 \ V$ $I_B = 0; \ V_{CE} = 22 \ V$	I _{CBO} Iceo	max. – max. 0.5	_	_	0.2	mA
$I_B = 0$, $V_{CE} = 22 \text{ V}$ $I_B = 0$; $V_{CE} = 30 \text{ V}$	ICEO	max	0.5	_	_	mA
$I_B = 0, V_{CE} = 30 \text{ V}$ $I_B = 0, V_{CE} = 40 \text{ V}$	I _{CEO}	max. –	-	0.5	_	mA
$I_B = 0$; $V_{CE} = 50 \text{ V}$	ICEO	max. –		_	0.5	mA
Emitter cut-off current	ICEU	mux.			0.0	77721
$I_C = 0; V_{EB} = 5 V$	I_{EBO}	max.	2.	0		mA
Breakdown voltages						
$I_C = 100 \text{ mA}; I_B = 0$	VCEO(sus)*	min. 45	60	80	100	V
IC = 1 mA; IE = 0	VCBO	min. 45	60	80	100	V
$I_E = 1 \text{ mA}; I_C = 0$	V_{EBO}	min.	5.	0		V
Saturation voltages						
$I_C = 3 A; I_B = 12 mA$	V_{CEsat}^*	max.	2.	0		V
	$VBEsat^*$	max.	2.	5		V
D.C. current gain						
IC = 3 A; $VCE = 3 V$	h_{FE}^*	min.	75	50		
Small signal current gain						
$I_C = 3 A$; $V_{CE} = 4 V$; $f = 1.0 MHz$	$ h_{fe} $	min.	4.	0		
Output capacitance $f = 1.0 \text{ MHz}$						
$I_E = 0; V_{CB} = 10 V$ NPN PNP	C_o	max.	30 20			pF nF
Parallel-diode forward voltage	C_0	max.	20	,,,		рF
$I_F = 3 A$	V_F	max	2.	5		V
-	_	max.				V
$I_F = 8 A$	V_F	typ.	2.	J		V

^{*} Pulse test: pulse width \leq 300 µs; duty cycle \leq 2%

Customer Notes

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD is believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of Continental Device India Limited