




# **16A TRIACS**



BTA16-600/800/1200 TO-220 (Ins) Plastic Package

BTB16-600/800/1200 TO-220 (Non-Ins) Plastic Package

BTA16 series triacs, with high ability to withstand the shock loading of large current, provide high dv/dt rate with strong resistance to electromagnetic interface. With high commutation performances, 3 quadrant products expecially recommended for use on inductive load.

#### ABSOLUTE MAXIMUM RATINGS

| PARAMETER                                                             |                                                                                    | SYMBOL              | VALUE                 | UNIT             |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------|-----------------------|------------------|
| Storage junction temperature range                                    |                                                                                    | T <sub>stg</sub>    | -40 to 150            | °C               |
| Operating junction temperature range                                  |                                                                                    | Tj                  | -40 to 125            | °C               |
| Repetitive peak of                                                    | f-state voltage (T <sub>j</sub> =25°C)                                             | V <sub>DRM</sub>    | 600/800/1200          | V                |
| Repetitive peak re                                                    | verse voltage (T <sub>j</sub> =25°C)                                               | V <sub>RRM</sub>    | 600/800/1200          | V                |
| Non repetitive surg                                                   | ge peak Off-state voltage                                                          | V <sub>DSM</sub>    | V <sub>DRM</sub> +100 | V                |
| Non repetitive peak reverse voltage                                   |                                                                                    | V <sub>RSM</sub>    | V <sub>RRM</sub> +100 | V                |
| RMS on-state<br>current                                               | TO-220 (Ins) (T <sub>c</sub> =86°C)<br>TO-220 (Non-Ins)<br>(T <sub>c</sub> =107°C) | I <sub>T(RMS)</sub> | 16                    | А                |
| Non repetitive surge peak on-state current<br>(full cycle, F=50Hz)    |                                                                                    | I <sub>TSM</sub>    | 160                   | А                |
| I²t value for fusing                                                  | g (t <sub>p</sub> =10ms)                                                           | l <sup>2</sup> t    | 128                   | A <sup>2</sup> s |
| Critical rate of rise of on-state current $(I_{G} = 2 \times I_{GT})$ |                                                                                    | dl/dt               | 50                    | A/µs             |
| Peak gate current                                                     |                                                                                    | I <sub>GM</sub>     | 4                     | А                |
| Average gate power dissipation                                        |                                                                                    | P <sub>G(AV)</sub>  | 1                     | W                |
| Peak gate power                                                       |                                                                                    | P <sub>GM</sub>     | 5                     | W                |



### **ELECTRICAL CHARACTERISTICS** ( $T_j=25^{\circ}c$ unless otherwise specified)

### 3 Quadrants (V <sub>DRM</sub> /V <sub>RRM</sub> : 600/800V)

| PARAMETER                                        | TEST CONDITIONS                                                        | SYMBOL          | QUADRANT |       | VAL  | JES  |      | UNITS |
|--------------------------------------------------|------------------------------------------------------------------------|-----------------|----------|-------|------|------|------|-------|
|                                                  |                                                                        |                 |          | BW    | CW   | SW   | TW   |       |
| Gate Trigger<br>Current                          | V 42V B 220                                                            | Ι <sub>GT</sub> | -    -   | <50   | <35  | <10  | <5   | mA    |
| Gate Trigger<br>Voltage                          | $V_{D} = 12V R_{L} = 33\Omega$                                         | V <sub>GT</sub> | -    -   |       | <1.3 |      |      | V     |
| Off-State Gate<br>Voltage                        | $V_{D} = V_{DRM} T_{j} = 125 \degree C$<br>$R_{L} = 3.3 K\Omega$       | $V_{GD}$        | -    -   | >0.2  |      |      | V    |       |
|                                                  |                                                                        | IL -            | -        | <70   | <50  | <30  | <15  | • mA  |
| Latching Current                                 | I <sub>G</sub> =1.2I <sub>GT</sub>                                     |                 | II       | <80   | <60  | <40  | <20  |       |
| Holding Current                                  | I <sub>T</sub> =100mA                                                  | I <sub>H</sub>  |          | <60   | <40  | <25  | <15  | mA    |
| Critical Rate of<br>Rise of Off-State<br>Voltage | V <sub>D</sub> =2/3V <sub>DRM</sub> Gate Open<br>T <sub>j</sub> =125°C | dV/dt           |          | >1000 | >500 | >200 | >100 | V/µs  |

## 4 Quadrant (V <sub>DRM</sub>/V <sub>RRM</sub>: 600/800V)

| PARAMETER                                        | TEST CONDITIONS                                                    | SYMBOL          | QUADRANT         | VALU                | JES        | UNITS |
|--------------------------------------------------|--------------------------------------------------------------------|-----------------|------------------|---------------------|------------|-------|
|                                                  |                                                                    |                 |                  | В                   | C          |       |
| Gate Trigger<br>Current                          |                                                                    | І <sub>бт</sub> | -    -    <br> V | <50<br><70          | <25<br><50 | mA    |
| Gate Trigger<br>Voltage                          | $V_{\rm D} = 12 V R_{\rm L} = 33 \Omega$                           | V <sub>GT</sub> | ALL              | <1.5                |            | V     |
| Off-State Gate<br>Voltage                        | $V_{D} = V_{DRM} T_{j} = 125^{\circ}C \qquad R_{L}$ $= 3.3K\Omega$ | V <sub>GD</sub> | ALL              | >0.2                |            | V     |
| Latching Current                                 | I <sub>G</sub> =1.2I <sub>GT</sub>                                 | IL.             | -     -  V<br>   | <70 <50<br><100 <80 |            | mA    |
| Holding Current                                  | I <sub>T</sub> =100mA                                              | I <sub>H</sub>  |                  | <60                 | <40        | mA    |
| Critical Rate of<br>Rise of Off-State<br>Voltage | $V_D=2/3V_{DRM}$ Gate Open<br>T <sub>j</sub> =125°C                | dV/dt           |                  | >500                | >200       | V/µs  |



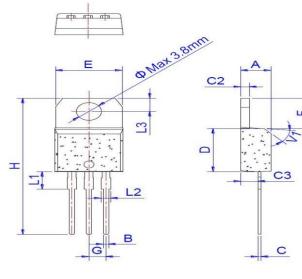


# 3 Quadrants (V DRM/V RRM: 1200V)

| PARAMETER                                        | TEST CONDITIONS                                                  | SYMBOL          | QUADRANT  | VALUES     | UNITS |
|--------------------------------------------------|------------------------------------------------------------------|-----------------|-----------|------------|-------|
| Gate Trigger<br>Current                          | V 12V P 220                                                      | Ι <sub>GT</sub> | -    -    | <50        | mA    |
| Gate Trigger<br>Voltage                          | $V_{D} = 12V R_{L} = 33\Omega$                                   | V <sub>GT</sub> | -    -    | <1.5       | V     |
| Off-State Gate<br>Voltage                        | $V_{D} = V_{DRM} T_{j} = 125 \degree C$<br>$R_{L} = 3.3 K\Omega$ | $V_{GD}$        | -    -    | >0.2       | V     |
| Latching Current                                 | I <sub>G</sub> =1.2I <sub>GT</sub>                               | ١L              | -    <br> | <70<br><90 | mA    |
| Holding Current                                  | I <sub>T</sub> =100mA                                            | Iн              |           | <60        | mA    |
| Critical Rate of<br>Rise of Off-State<br>Voltage | $V_{D}=2/3V_{DRM}$ Gate Open<br>T <sub>j</sub> =125°C            | dV/dt           |           | >1500      | V/µs  |

### STATIC CHARACTERISTICS

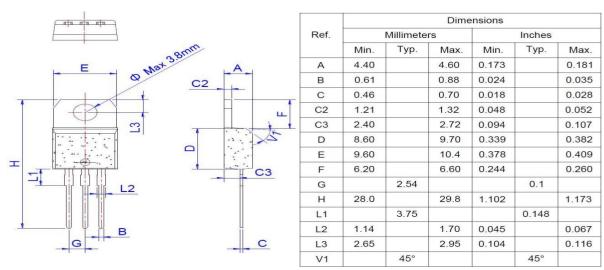
| PARAMETER                                           | TEST CONDITIONS                              |                      | SYMBOL           | VALUE (MAX) |       |        | UNITS |
|-----------------------------------------------------|----------------------------------------------|----------------------|------------------|-------------|-------|--------|-------|
| FARAMETER                                           | TEST CONDITIONS                              | CONDITIONS           |                  | -600V       | -800V | -1200V |       |
| On-State Voltage                                    | I <sub>TM</sub> =22.5A t <sub>p</sub> =380μs | T <sub>j</sub> =25°C | V <sub>TM</sub>  | 1.5         |       |        | V     |
| Off-State Leakage                                   |                                              | T <sub>j</sub> =25°C | I <sub>DRM</sub> | 5           | 5     | 10     | μA    |
| $V_{\rm D} = V_{\rm DRM} , V_{\rm R} = V_{\rm RRM}$ | T <sub>j</sub> =125°C                        | I <sub>RRM</sub>     | 2                | 2           | 1     | mA     |       |


## THERMAL RESISTANCES

| PARAMETER       |                  | SYMBOL               | VALUE (MAX) | UNITS |
|-----------------|------------------|----------------------|-------------|-------|
| Maximum Thermal | TO-220 (Ins)     | D                    | 2.1         | °C/W  |
| Resistance      | TO-220 (Non-Ins) | K <sub>th(j-c)</sub> | 1.2         | C/ W  |

### ORDERING INFORMATION

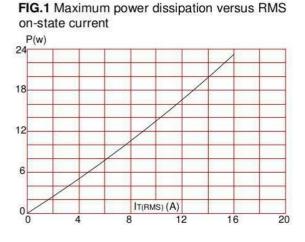
| BTA12-XY                        |                                                      |
|---------------------------------|------------------------------------------------------|
| BTB12-XY                        |                                                      |
| $X = 600$ : VDRM/VRRM $\ge 600$ | $Y = BW$ : $I_{GT1-3} \le 50mA$                      |
| = 800: VDRM/VRRM ≥ 800          | = CW: $I_{GT1-3} \leq 35mA$                          |
| = 1200: VDRM/VRRM ≥ 1200        | = SW: I <sub>GT1-3</sub> ≤ 10mA                      |
|                                 | = TW: I <sub>GT1-3</sub> ≤ 5mA                       |
|                                 | = B: I <sub>GT1-3</sub> ≤50mA I <sub>GT4</sub> ≤70mA |
|                                 | = C: $I_{GT1-3} \leq 25mA$ $I_{GT4} \leq 50mA$       |
|                                 |                                                      |

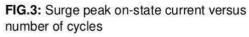


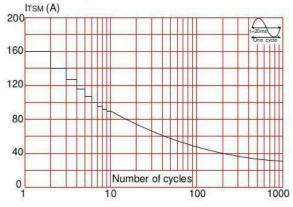



### TO-220 (Ins) PACKAGE OUTLINE AND DIMENSIONS

|      | Dimensions |             |      |       |        |       |  |  |
|------|------------|-------------|------|-------|--------|-------|--|--|
| Ref. |            | Millimeters |      |       | Inches |       |  |  |
|      | Min.       | Тур.        | Max. | Min.  | Typ.   | Max.  |  |  |
| A    | 4.40       |             | 4.60 | 0.173 |        | 0.181 |  |  |
| в    | 0.61       |             | 0.88 | 0.024 |        | 0.035 |  |  |
| С    | 0.46       |             | 0.70 | 0.018 |        | 0.028 |  |  |
| C2   | 1.21       |             | 1.32 | 0.048 |        | 0.052 |  |  |
| C3   | 2.40       |             | 2.72 | 0.094 |        | 0.107 |  |  |
| D    | 8.60       |             | 9.70 | 0.339 |        | 0.382 |  |  |
| E    | 9.80       |             | 10.4 | 0.386 |        | 0.409 |  |  |
| F    | 6.55       |             | 6.95 | 0.258 |        | 0.274 |  |  |
| G    |            | 2.54        |      |       | 0.1    |       |  |  |
| Н    | 28.0       |             | 29.8 | 1.102 |        | 1.173 |  |  |
| L1   |            | 3.75        |      |       | 0.148  |       |  |  |
| L2   | 1.14       |             | 1.70 | 0.045 |        | 0.067 |  |  |
| L3   | 2.65       |             | 2.95 | 0.104 |        | 0.116 |  |  |
| V1   |            | 45°         |      |       | 45°    |       |  |  |


### TO-220 (Non-Ins) PACKAGE OUTLINE AND DIMENSIONS





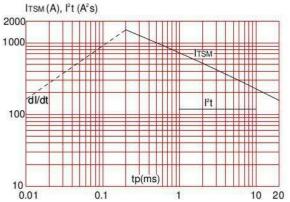
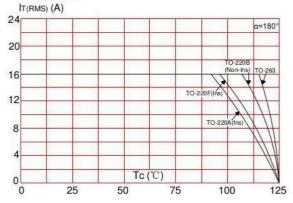
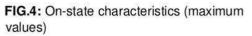
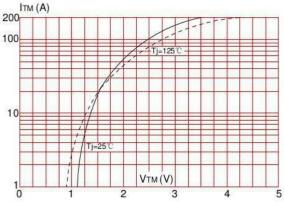

### CHARACTERISTIC CURVES

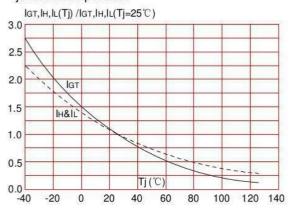






**FIG.5:** Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp<20ms, and corresponging value of  $l^{2}t$  (dl/dt < 50A/µs)



FIG.2: RMS on-state current versus case temperature







**FIG.6:** Relative variations of gate trigger current, holding current and latching current versus junction temperature







Customer Notes

#### Component Disposal Instructions

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

#### DISCLAIMER

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD is believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.



CDIL is a registered Trademark of Continental Device India Pvt. Limited