

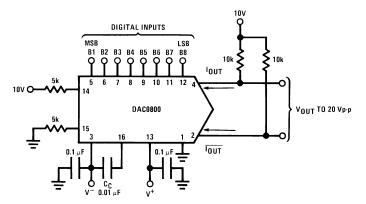
SNAS538C – JUNE 1999 – REVISED FEBRUARY 2013

DAC0800/DAC0802 8-Bit Digital-to-Analog Converters

Check for Samples: DAC0800, DAC0802

FEATURES

- Fast Settling Output Current: 100 ns
- Full Scale Error: ±1 LSB
- Nonlinearity Over Temperature: ±0.1%
- Full Scale Current Drift: ±10 ppm/°C
- High Output Compliance: -10V to +18V
- Complementary Current Outputs
- Interface Directly with TTL, CMOS, PMOS and Others
- 2 Quadrant Wide Range Multiplying Capability
- Wide Power Supply Range: ±4.5V to ±18V
- Low Power Consumption: 33 mW at ±5V
- Low Cost


DESCRIPTION

The DAC0800 series are monolithic 8-bit high-speed current-output digital-to-analog converters (DAC) featuring typical settling times of 100 ns. When used as a multiplying DAC, monotonic performance over a 40 to 1 reference current range is possible. The DAC0800 series also features high compliance complementary current outputs to allow differential output voltages of 20 Vp-p with simple resistor loads. The reference-to-full-scale current matching of better than \pm 1 LSB eliminates the need for full-scale trims in most applications, while the nonlinearities of better than \pm 0.1% over temperature minimizes system error accumulations.

The noise immune inputs will accept a variety of logic levels. The performance and characteristics of the device are essentially unchanged over the $\pm 4.5V$ to $\pm 18V$ power supply range and power consumption at only 33 mW with $\pm 5V$ supplies is independent of logic input levels.

The DAC0800, DAC0802, DAC0800C and DAC0802C are a direct replacement for the DAC-08, DAC-08A, DAC-08C, and DAC-08H, respectively. For single supply operation, refer to AN-1525.

Typical Application

Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.

Figure 1. ±20 V_{P-P} Output Digital-to-Analog Converter

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

Absolute Maximum Ratings ⁽¹⁾

Supply Voltage ($V^+ - V^-$)	±18V or 36V
Power Dissipation ⁽²⁾	500 mW
Reference Input Differential Voltage	
(V14 to V15)	V ⁻ to V ⁺
Reference Input Common-Mode	
Range (V14, V15)	V ⁻ to V ⁺
Reference Input Current	5 mA
Logic Inputs	V ⁻ to V ⁻ plus 36V
Analog Current Outputs	
(V _S -=-15V)	4.25 mA
ESD Susceptibility ⁽³⁾	TBD V
Storage Temperature	−65°C to +150°C
Lead Temp. (Soldering, 10 seconds)	
PDIP Package (plastic)	260°C
CDIP Package (ceramic)	300°C
Surface Mount Package	
Vapor Phase (60 seconds)	215°C
Infrared (15 seconds)	220°C

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions. The maximum junction temperature of the DAC0800 and DAC0802 is 125°C. For operating at elevated temperatures, devices in the

(2)CDIP package must be derated based on a thermal resistance of 100°C/W, junction-to-ambient, 175°C/W for the molded PDIP package and 100°C/W for the SOIC package. Human body model, 100 pF discharged through a 1.5 k Ω resistor.

(3)

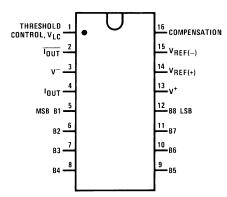
Operating Conditions⁽¹⁾

	Min	Max	Units
Temperature (T _A)			
DAC0800L	-55	+125	°C
DAC0800LC	0	+70	°C
DAC0802LC	0	+70	°C
V*	(V [−]) + 10	(V ⁻) + 30	V
V-	-15	-5	V
$I_{REF} (V^- = -5V)$	1	2	mA
$I_{REF} (V^{-} = -15V)$	1	4	mA

Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not (1) apply when operating the device beyond its specified operating conditions.

SNAS538C -JUNE 1999-REVISED FEBRUARY 2013

www.ti.com


Electrical Characteristics

The following specifications apply for $V_S = \pm 15V$, $I_{REF} = 2$ mA and $T_{MIN} \le T_A \le T_{MAX}$ unless otherwise specified. Output characteristics refer to both I_{OUT} and $\overline{I_{OUT}}$.

	Parameter	Test Conditions	D	AC0802L	.C		AC0800		Units
			Min	Тур	Max	Min	Тур	Max	
	Resolution		8	8	8	8	8	8	Bits
	Monotonicity		8	8	8	8	8	8	Bits
	Nonlinearity				±0.1			±0.19	%FS
		To $\pm \frac{1}{2}$ LSB, All Bits Switched "ON" or "OFF", T _A =25°C		100	135				ns
t _s	Settling Time	DAC0800L					100	135	ns
		DAC0800LC					100	150	ns
t _{PLH} ,	Propagation Delay	T _A =25°C							
t _{PHL}	Each Bit			35	60		35	60	ns
	All Bits Switched			35	60		35	60	ns
TCI _{FS}	Full Scale Tempco			±10	±50		±10	±50	ppm/°C
V _{OC}	Output Voltage Compliance	Full Scale Current Change <½ LSB, R _{OUT} >20 MΩ, Typical	-10		18	-10		18	V
I _{FS4}	Full Scale Current	$V_{REF} = 10.000V$, R14 = R15 = 5.000 kΩ, T _A =25°C	1.984	1.992	2.00	1.94	1.99	2.04	mA
I _{FSS}	Full Scale Symmetry	I _{FS4} -I _{FS2}		±0.5	±4.0		±1	±8.0	μA
I _{ZS}	Zero Scale Current			0.1	1.0		0.2	2.0	μA
I _{FSR}	Output Current Range	$V^{-} = -5V$ V ⁻ = -8V to -18V	0 0	2.0 2.0	2.1 4.2	0 0	2.0 2.0	2.1 4.2	mA
	Logic Input Levels	$V_{LC} = 0V$							
V _{IL}	Logic "0"				0.8			0.8	V
VIH	Logic "1"		2.0			2.0			V
	Logic Input Current	$V_{LC} = 0V$							
IIL	Logic "0"	$-10V \le V_{IN} \le +0.8V$		-2.0	-10		-2.0	-10	μA
I _{IH}	Logic "1"	$2V \le V_{IN} \le +18V$		0.002	10		0.002	10	μA
V _{IS}	Logic Input Swing	V ⁻ = -15V	-10		18	-10		18	V
V _{THR}	Logic Threshold Range	$V_{S} = \pm 15V$	-10		13.5	-10		13.5	V
I ₁₅	Reference Bias Current			-1.0	-3.0		-1.0	-3.0	μA
dl/dt	Reference Input Slew Rate	(Figure 26)	4.0	8.0		4.0	8.0		mA/µs
PSSI _{FS+}	Positive Power Supply Sensitivity	4.5V ≤ V ⁺ ≤ 18V		0.0001	0.01		0.0001	0.01	%/%
PSSI _{FS-}	Negative Power Supply Sensitivity	$-4.5V \le V^- \le 18V$, $I_{REF} = 1mA$		0.0001	0.01		0.0001	0.01	%/%
l+	- Power Supply Current	$1/2 = \pm 5 1/2 = -1 = -1 = -1 = -1 = -1 = -1 = -1 = -$		2.3	3.8		2.3	3.8	mA
I-		$V_S = \pm 5V$, $I_{REF} = 1 \text{ mA}$		-4.3	-5.8		-4.3	-5.8	mA
l+	Dower Supply Correct			2.4	3.8		2.4	3.8	mA
I-	Power Supply Current	$V_{S} = +5V, -15V, I_{REF} = 2 \text{ mA}$		-6.4	-7.8		-6.4	-7.8	mA
l+	Devices Queenly Queent			2.5	3.8		2.5	3.8	mA
I-	Power Supply Current	$V_S = \pm 15V, I_{REF} = 2 \text{ mA}$		-6.5	-7.8		-6.5	-7.8	mA
		±5V, I _{REF} = 1 mA		33	48		33	48	mW
P _D	Power Consumption	+5V, −15V, I _{REF} = 2 mA		108	136		108	136	mW
		$\pm 15V$, I _{REF} = 2 mA		135	174		135	174	mW

Connection Diagrams

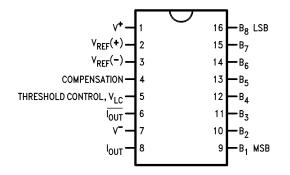
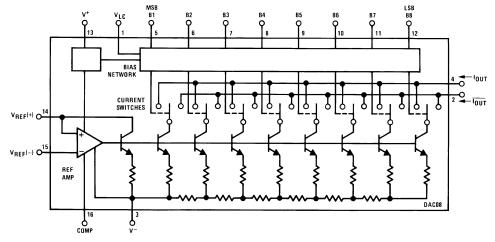
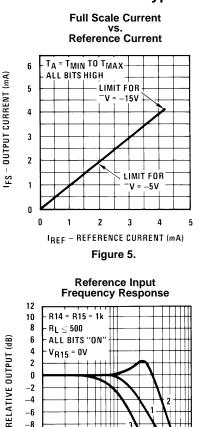



Figure 2. PDIP, CDIP Packages - Top View (See Package Number NFG0016E or NFE0016A)

Block Diagram


Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.

Copyright © 1999–2013, Texas Instruments Incorporated

Figure 4.

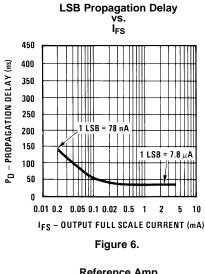
SNAS538C -JUNE 1999-REVISED FEBRUARY 2013

-6

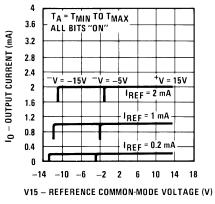
-8

-10

-12 -14

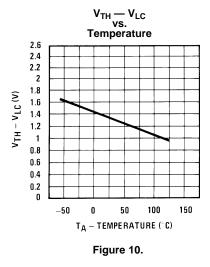

> 0.1 0.2

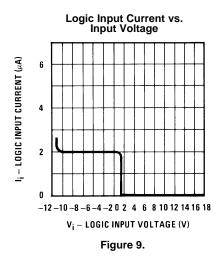
Curve 1: C_C=15 pF, V_{IN}=2 Vp-p centered at 1V.


Curve 2: C_C=15 pF, V_{IN}=50 mVp-p centered at 200 mV. Curve 3: C_C=0 pF, V_{IN}=100 mVp-p centered at 0V and applied

through 50Ω connected to pin 14.2V applied to R14.

Typical Performance Characteristics




Reference Amp Common-Mode Range

Note. Positive common-mode range is always (V+) - 1.5V.

Figure 8.

0.5 1 2

FREQUENCY (MHz)

Figure 7.

5 10

Copyright © 1999-2013, Texas Instruments Incorporated

2.8

2.4

2

1.6

1.2

0.8

0.4

0

1.4

1.2

1

0.8

0.6

0.4

0.2

ß

8

7

6

5

4

3

2

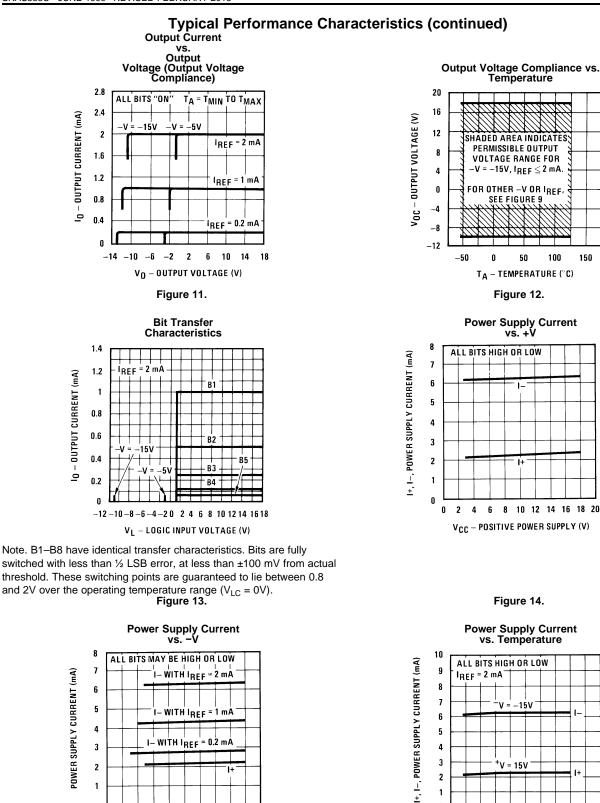
1

0

0

-2 -4 -6 -8 -10 -12 -14 -16 -18 -20

V - NEGATIVE POWER SUPPLY (V)


Figure 15.

POWER SUPPLY CURRENT (mA)

10 – OUTPUT CURRENT (mA)

IREF

1₀ – 0UTPUT CURRENT (mA)

www.ti.com

NSTRUMENTS

Texas

Copyright © 1999–2013, Texas Instruments Incorporated

100

150

3

2

1 0

-50

^FV = 15V

50

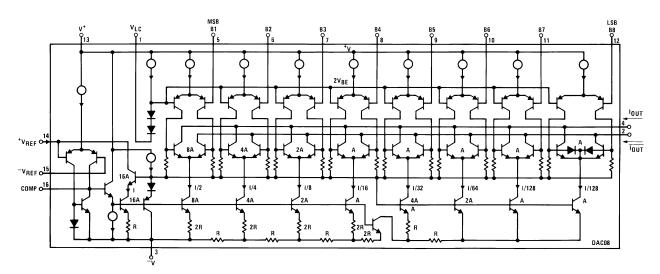
T_A - TEMPERATURE (°C) Figure 16.

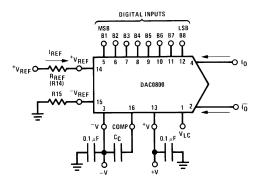
6

SNAS538C-JUNE 1999-REVISED FEBRUARY 2013

www.ti.com

EQUIVALENT CIRCUIT




Figure 17. Equivalent Circuit

SNAS538C-JUNE 1999-REVISED FEBRUARY 2013

www.ti.com

TYPICAL APPLICATIONS

Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.

$$I_{\text{FS}} \approx \frac{+\,V_{\text{REF}}}{R_{\text{REF}}} \times \frac{255}{256}$$

$$\begin{split} &\mathsf{I}_{O}+\bar{\mathsf{I}}_{O}=\mathsf{I}_{FS} \text{ for all logic states} \\ &\mathsf{For fixed reference, TTL operation, typical values are:} \\ &\mathsf{V}_{REF}=10.000\mathsf{V} \\ &\mathsf{R}_{REF}=5.000\mathsf{k} \\ &\mathsf{R15}\approx\mathsf{R}_{REF} \\ &\mathsf{C}_{C}=0.01\ \mu\mathsf{F} \\ &\mathsf{V}_{LC}=0\mathsf{V} \mbox{ (Ground)} \end{split}$$

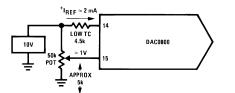
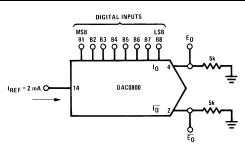


Figure 19. Recommended Full Scale Adjustment Circuit


Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.

8

Copyright © 1999–2013, Texas Instruments Incorporated

SNAS538C - JUNE 1999-REVISED FEBRUARY 2013

Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.

Figure 21. Basic Unipolar Negative Operation

								J				
	B1	B2	B3	B4	B5	B6	B7	B8	I _O mA	Ī _o mA	Eo	Eo
Full Scale	1	1	1	1	1	1	1	1	1.992	0.000	-9.960	0.000
Full Scale-LSB	1	1	1	1	1	1	1	0	1.984	0.008	-9.920	-0.040
Half Scale+LSB	1	0	0	0	0	0	0	1	1.008	0.984	-5.040	-4.920
Half Scale	1	0	0	0	0	0	0	0	1.000	0.992	-5.000	-4.960
Half Scale-LSB	0	1	1	1	1	1	1	1	0.992	1.000	-4.960	-5.000
Zero Scale+LSB	0	0	0	0	0	0	0	1	0.008	1.984	-0.040	-9.920
Zero Scale	0	0	0	0	0	0	0	0	0.000	1.992	0.000	-9.960

Table 1. Basic Unipolar Negative Operation

Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.

Figure 22. Basic Bipolar Output Operation

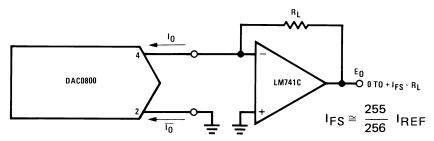
	B1	B2	B3	B4	B5	B6	B7	B8	Eo	Ēo
Pos. Full Scale	1	1	1	1	1	1	1	1	-9.920	+10.000
Pos. Full Scale-LSB	1	1	1	1	1	1	1	0	-9.840	+9.920
Zero Scale+LSB	1	0	0	0	0	0	0	1	-0.080	+0.160
Zero Scale	1	0	0	0	0	0	0	0	0.000	+0.080
Zero Scale-LSB	0	1	1	1	1	1	1	1	+0.080	0.000
Neg. Full Scale+LSB	0	0	0	0	0	0	0	1	+9.920	-9.840
Neg. Full Scale	0	0	0	0	0	0	0	0	+10.000	-9.920

Table 2. Basic Bipolar Output Operation

DAC0800, DAC0802

SNAS538C - JUNE 1999-REVISED FEBRUARY 2013

www.ti.com



- (1) Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.
- (2) If $R_L = \overline{R}_L$ within ±0.05%, output is symmetrical about ground.

Figure 23. Symmetrical Offset Binary Operation

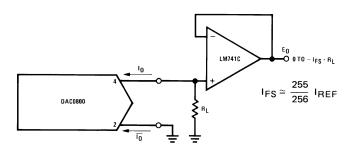

	B1	B2	B3	B4	B5	B6	B7	B8	Eo
Pos. Full Scale	1	1	1	1	1	1	1	1	+9.960
Pos. Full Scale-LSB	1	1	1	1	1	1	1	0	+9.880
(+)Zero Scale	1	0	0	0	0	0	0	0	+0.040
(-)Zero Scale	0	1	1	1	1	1	1	1	-0.040
Neg. Full Scale+LSB	0	0	0	0	0	0	0	1	-9.880
Neg. Full Scale	0	0	0	0	0	0	0	0	-9.960

Table 3. Symmetrical Offset Binary Operation

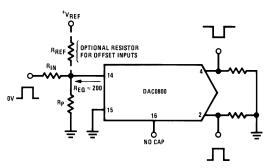
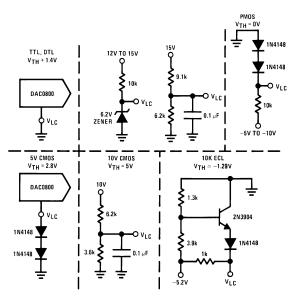
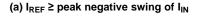

- (1) Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.
- (2) For complementary output (operation as negative logic DAC), connect inverting input of op amp to \overline{I}_{O} (pin 2), connect I_{O} (pin 4) to ground.

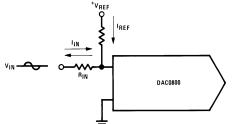
Figure 24. Positive Low Impedance Output Operation

- (1) Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.
- (2) For complementary output (operation as a negative logic DAC) connect non-inverting input of op am to I
 ₀ (pin 2); connect I
 ₀ (pin 4) to ground.


Figure 25. Negative Low Impedance Output Operation

Typical values: R_{IN}=5k,+V_{IN}=10V


Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.


Figure 26. Pulsed Reference Operation

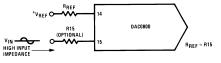
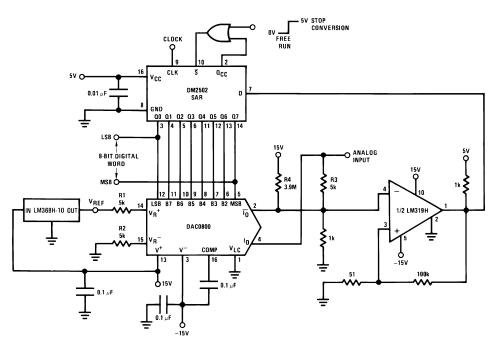

$$\begin{split} V_{TH} &= V_{LC} + 1.4V \\ 15V CMOS, HTL, HNIL \\ V_{TH} &= 7.6V \\ Note. \ Do \ not \ exceed \ negative \ logic \ input \ range \ of \ DAC. \end{split}$$

Figure 27. Interfacing with Various Logic Families

(b) + V_{REF} must be above peak positive swing of V_{IN}

Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.


Figure 28. Accommodating Bipolar References

SNAS538C-JUNE 1999-REVISED FEBRUARY 2013

Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.

Figure 29. Settling Time Measurement

- (1) For 1 μ s conversion time with 8-bit resolution and 7-bit accuracy, an LM361 comparator replaces the LM319 and the reference current is doubled by reducing R1, R2 and R3 to 2.5 k Ω and R4 to 2 M Ω .
- (2) Pin numbers represent the PDIP package. The SOIC package pin numbers differ from that of the PDIP package.

Figure 30. A Complete 2 µs Conversion Time, 8-Bit A/D Converter

SNAS538C - JUNE 1999-REVISED FEBRUARY 2013

REVISION HISTORY

Ch	hanges from Revision B (February 2013) to Revision C F	Page)
•	Changed layout of National Data Sheet to TI format	. 12	2

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
							(6)				
DAC0800LCM	NRND	SOIC	D	16	48	Non-RoHS & Green	Call TI	Level-1-235C-UNLIM	0 to 70	DAC0800LCM	
DAC0800LCM/NOPB	ACTIVE	SOIC	D	16	48	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	DAC0800LCM	Samples
DAC0800LCMX/NOPB	ACTIVE	SOIC	D	16	2500	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	DAC0800LCM	Samples
DAC0800LCN/NOPB	ACTIVE	PDIP	NFG	16	25	RoHS & Non-Green	SN	Level-1-NA-UNLIM	0 to 70	DAC0800LCN DAC-08EP	Samples
DAC0802LCMX	NRND	SOIC	D	16	2500	Non-RoHS & Green	Call TI	Level-1-235C-UNLIM	0 to 70	DAC0802LCM	
DAC0802LCMX/NOPB	ACTIVE	SOIC	D	16	2500	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	DAC0802LCM	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

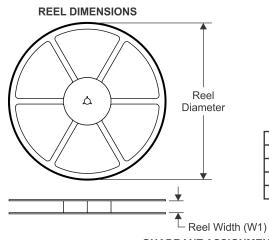
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

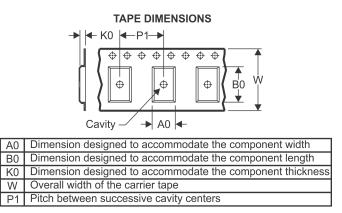
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

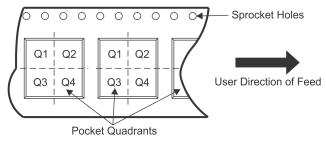
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

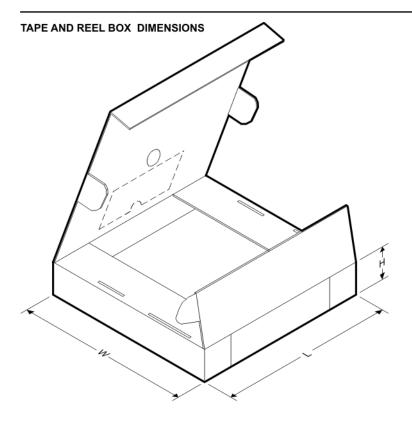

PACKAGE MATERIALS INFORMATION

Texas Instruments


www.ti.com

TAPE AND REEL INFORMATION

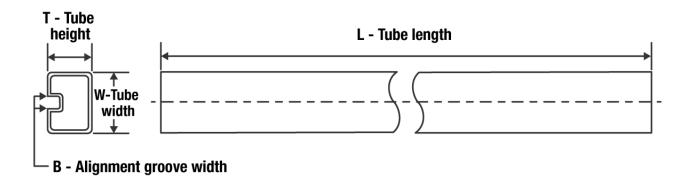
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DAC0800LCMX/NOPB	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1
DAC0802LCMX	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1
DAC0802LCMX/NOPB	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.3	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

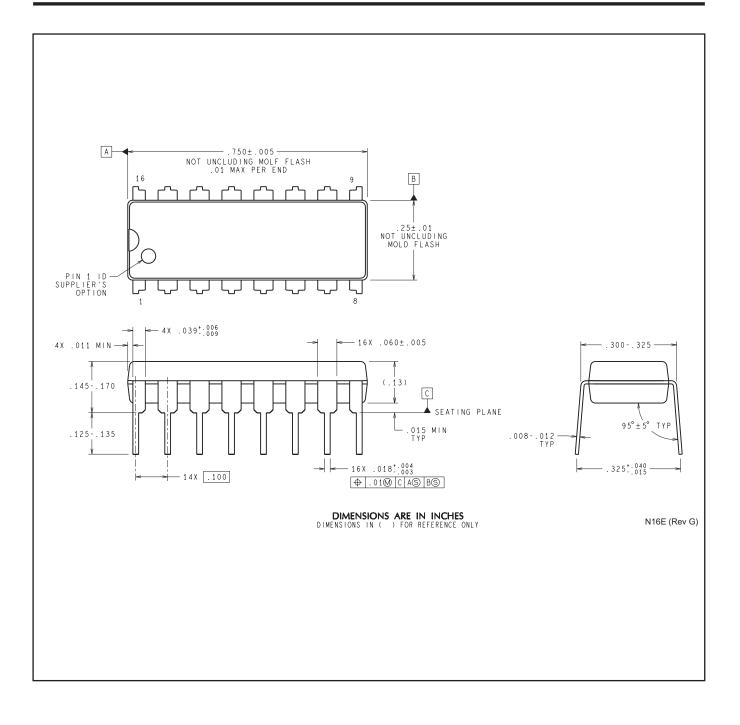
9-Apr-2022


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DAC0800LCMX/NOPB	SOIC	D	16	2500	367.0	367.0	35.0
DAC0802LCMX	SOIC	D	16	2500	356.0	356.0	35.0
DAC0802LCMX/NOPB	SOIC	D	16	2500	356.0	356.0	35.0

9-Apr-2022

TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
DAC0800LCM	D	SOIC	16	48	495	8	4064	3.05
DAC0800LCM	D	SOIC	16	48	495	8	4064	3.05
DAC0800LCM/NOPB	D	SOIC	16	48	495	8	4064	3.05
DAC0800LCN/NOPB	NFG	PDIP	16	25	502	14	11938	4.32

MECHANICAL DATA

NFG0016E

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated